Using LTspice to Characterize Capacitor Banks

添加至 myAnalog

将文章添加到 myAnalog 的资源部分、现有项目或新项目。

创建新项目

Capacitor banks are used to filter noise and provide energy storage for fast load transient response. For modeling the stability of a DC/DC converter the ESR of the capacitor bank is needed. This can be easily done if only one type of capacitor is used with multiple capacitors in parallel. This is difficult if many different types of capacitors are used in a parallel configuration. Using LTspice, the capacitor bank can be characterized and key parameters can be extracted. This is very helpful when using the LTpowerCAD tool for stability analysis.

Example

In the schematic below, five different capacitors are in parallel.  For stability analysis, it is desired to model this as one capacitor.

Capacitor Bank

Running the simulation, the impedance is plotted below.  This is simply the source voltage divided by the source current; V(n001)/I(V1).

Impedance Plot 1

Using the curser measurement tool, the self-resonant frequency of the network is 243KHz, and the amplitude of the impedance is –49.65dB. It is important to note at self-resonance the imaginary impedance of the capacitive reactance and the inductive reactance cancel resulting in the ESR of the LC network as the only impedance. Solving for the impedance in Ohms, the resultant ESR is 3.29m Ω.

Quick note on algebra:
20log(x) = –49.65
log(x) = –2.4825
x = 0.00329

Impedance Measurement

A couple of other insights can be gained from this impedance approach. The plot below shows the current in two of the capacitors, I(C3) and I(C4), as a function of frequency. This is intuitively obvious, but helpful to quantify. The 4.7µF ceramic capacitor has a low impedance up to 2.3MHz, whereas the 330µF capacitor is inductive at 2.3MHz and provides a higher impedance for energy transfer compared to the 4.7µF capacitor.

Impedance Plot 2

Conclusion

By using LTspice to characterize the self-resonance of a bank of parallel capacitors the equivalent ESR can be easily determined. LTspice is a powerful tool that provides an easy format for defining the problem, and an intuitively obvious graphical solution that allows a simple analysis for a complex problem.

关于作者

Steve Knudtsen
Steve Knudtsen是ADI公司的一名高级现场应用工程师,工作地点在美国科罗拉多。他毕业于科罗拉多州立大学,拥有电子工程学士学位,自2000年开始,一直在凌力尔特和ADI公司工作。

Prior to being an FAE Steve worked as a Member of the Technical Staff at Lucent Technologies developing high densi...
Gabino Alonso
Gabino Alonso目前是Power by Linear™部门的战略营销总监。加入ADI公司之前,Gabino在凌力尔特、德州仪器、加州理工州立大学担任过市场营销、工程、运营和讲师等多个职位。他拥有加州大学圣巴巴拉分校电子和计算机工程硕士学位。

关联至此文章

最新视频 20

Subtitle
了解更多
添加至 myAnalog

将文章添加到 myAnalog 的资源部分、现有项目或新项目。

创建新项目