

8GHz~14GHz の低ノイズ・アンプ

特長

- ▶ 単一正電源(自己バイアス)の代表値:1.5V、35mA
- ▶ RBIAS ドレイン電流調整ピン
- ▶ ゲイン: 28.5dB (8GHz~10GHz)
- ▶ ノイズ指数:1dB(8GHz~10GHz)
- ▶ 広い動作温度範囲: -55°C~+125°C
- ▶ 内部整合、AC カップリング済み
- ▶ RoHS 準拠、2mm×2mm、8 ピン LFCSP

アプリケーション

- ▶ 衛星通信
- ▶ レーダー
- ▶ 電気通信

概要

ADL8143 は、8GHz~14GHzで動作する低ノイズ・アンプ(LNA)です。ゲイン、ノイズ指数、1dB 圧縮の出力電力(OP1dB)、出力 3 次インターセプト(OIP3)の代表値は、8GHz~10GHz でそれぞれ 28.5dB、1dB、7.5dBm、19.5dBm です。調整可能な公称静止電流(I_{DQ})は、1.5V の電源電圧(V_{DD})で 35mA です。また、ADL8143 の入出力は AC カップリングされ、内部で 50 Ω に整合されています。

ADL8143 は、RoHS に適合した $2mm \times 2mm$ 、8 ピン・リード・フレーム・チップ・スケール・パッケージ [LFCSP] に収容され、-55°Cで動作するよう仕様規定されています。

機能ブロック図

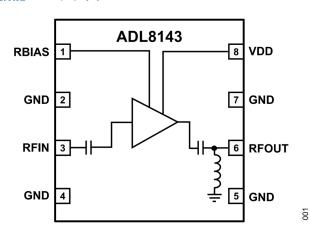


図 1. 機能ブロック図

目次

特長	.1
アプリケーション	.1
概要	.1
機能ブロック図	.1
仕様	.3
周波数範囲:8GHz~10GHz	.3
周波数範囲:10GHz~14GHz	.3
DC 仕様	.3
絶対最大定格	.4
熱抵抗	.4
静電放電(ESD)定格	.4
ESD に関する注意	.4

ピン配置およびピン機能の説明	5
インターフェース回路図	
代表的な性能特性	6
動作原理	13
アプリケーション情報	14
推奨バイアス・シーケンス	14
高速イネーブルおよびディスエーブル機能としての RBIAS の使用	15
推奨パワー・マネージメント回路	16
外形寸法	17
オーダー・ガイド	17
延価田ボード	17

改訂履歴

7/2024—Revision 0: Initial Version

analog.com.jp Rev. 0 | 2 of 17

仕様

周波数範囲:8GHz~10GHz

特に指定のない限り、電源電圧 $(V_{DD})=1.5V$ 、静止電流 $(I_{DQ})=35mA$ 、バイアス抵抗 $(R_{BIAS})=487\Omega$ 、 $T_{CASE}=25^{\circ}C$ 。

表 1.8GHz~10GHz の周波数範囲の仕様

Parameter	Min	Тур	Max	Unit	Test Conditions/Comments
FREQUENCY RANGE	8		10	GHz	
GAIN	26.5	28.5		dB	
Gain Variation over Temperature		0.026		dB/°C	
NOISE FIGURE		1		dB	
RETURN LOSS					
Input (S11)		11		dB	
Output (S22)		19		dB	
OUTPUT					
OP1dB	5.5	7.5		dBm	
Saturated Output Power (P _{SAT})		9		dBm	
OIP3		19.5		dBm	Measurement taken at output power (P _{OUT}) per tone = -6 dBm
Second-Order Intercept (OIP2)		14		dBm	Measurement taken at P _{OUT} per tone = −6 dBm
POWER ADDED EFFICIENCY (PAE)		15.53		%	Measured at P _{SAT}

周波数範囲:10GHz~14GHz

特に指定のない限り、 $V_{DD}=1.5V$ 、 $I_{DQ}=35mA$ 、 $R_{BIAS}=487\Omega$ 、 $T_{CASE}=25^{\circ}C_{\circ}$

表 2. 10GHz~14GHz の周波数範囲の仕様

Parameter	Min	Тур	Max	Unit	Test Conditions/Comments
FREQUENCY RANGE	10		14	GHz	
GAIN	26.5	28.5		dB	
Gain Variation over Temperature		0.029		dB/°C	
NOISE FIGURE		1.1		dB	
RETURN LOSS					
S11		17		dB	
S22		15		dB	
OUTPUT					
OP1dB	6.5	8.5		dBm	
P _{SAT}		10		dBm	
OIP3		22		dBm	Measurement taken at P _{OUT} per tone = −6 dBm
OIP2		22.5		dBm	Measurement taken at P _{OUT} per tone = −6 dBm
PAE		19.91		%	

DC 仕様

表 3. DC 仕様

2(0) = 0 12 131					
Parameter	Min	Тур	Max	Unit	
SUPPLY CURRENT					
I_{DQ}		35		mA	
Amplifier Current (I _{DQ_AMP})		33.2		mA	
Amplifier Current (I _{DQ_AMP}) R _{BIAS} Current (I _{RBIAS})		1.8		mA	
SUPPLY VOLTAGE					
V_{DD}	1.2	1.5	3.5	V	

analog.com.jp Rev. 0 | 3 of 17

絶対最大定格

表 4. 絶対最大定格

Parameter	Rating
V_{DD}	4 V
RF Input Power (RFIN)	20 dBm
Continuous Power Dissipation (P _{DISS}), and T _{CASE} = 85°C (Derate 12.09 mW/°C Above 85°C)	1.09 W
Temperature	
Storage Range	-65°C to +150°C
Operating Range	-55°C to +125°C
Quiescent Channel (T _{CASE} = 85°C, V _{DD} = 1.5 V,	89.34°C
I_{DQ} = 35 mA, and Input Power (P_{IN}) = Off) Maximum Channel	175°C

上記の絶対最大定格を超えるストレスを加えると、デバイスに 恒久的な損傷を与えることがあります。この規定はストレス定 格のみを指定するものであり、この仕様の動作のセクションに 記載する規定値以上でのデバイス動作を定めたものではありま せん。デバイスを長時間にわたり絶対最大定格状態に置くと、 デバイスの信頼性に影響を与えることがあります。

熱抵抗

熱性能は、プリント回路基板 (PCB) の設計と動作環境に直接 関連しています。PCB の熱設計には、細心の注意を払う必要が あります。

θ_{JC}は、チャンネルとケース間の熱抵抗です。

表 5. 熱抵抗

Package Type	θ_{JC}	Unit
CP-8-30		
Quiescent, T _{CASE} = 25°C	80.4	°C/W
Worst Case, ¹ T _{CASE} = 85°C	94.3	°C/W

[「]仕様規定されたすべての動作条件を通じた最も厳しい条件。

静電放電(ESD)定格

以下の ESD 情報は、ESD に敏感なデバイスを取り扱うために示したものですが、対象は ESD 保護区域内だけに限られます。

ANSI/ESDA/JEDEC JS-001 準拠の人体モデル (HBM)。

ADL8143 の ESD 定格

表 6. ADL8143、8 ピン LFCSP

ESD Model	Withstand Threshold (V)	Class
НВМ	±300	1A

ESD に関する注意

ESD(静電放電)の影響を受けやすいデバイスです。

電荷を帯びたデバイスや回路ボードは、検知されないまま放電することがあります。本製品は当社独自の特許技術であるESD保護回路を内蔵してはいますが、デバイスが高エネルギーの静電放電を被った場合、損傷を生じる可能性があります。したがって、性能劣化や機能低下を防止するため、ESDに対する適切な予防措置を講じることをお勧めします。

analog.com.jp Rev. 0 | 4 of 17

ピン配置およびピン機能の説明

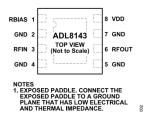


図 2. ピン配置

表 8. ピン機能の説明

ピン番号	記号	説明
1	RBIAS	バイアス設定抵抗。RBIAS と VDD の間に抵抗を接続して loo を設定します。詳細については、図 49 と表 8 を参照してください。インターフェース回路図については図 3 を参照してください。
2, 4, 5, 7	GND	グラウンド。電気インピーダンスと熱抵抗が低いグランド・プレーンに接続します。インターフェース回路図については図 6 を参照してください。
3	RFIN	RF 入力。RFIN ピンは AC カップリングされ、 50Ω に整合されています。インターフェース回路図については図 4 を参照してください。
6	RFOUT	RF 出力。RFOUT ピンはグラウンドに抵抗パスで接続され、RF 信号パスには AC カップリング・コンデンサで接続され、50Ωに整合されています。次段の DC バイアスレベルが 0V に等しくなければ、RFOUT ピンを外部で AC カップリングします。インターフェース回路図については図 5 を参照してください。
8	VDD GROUND PADDLE	ドレイン・パイアス。VDD ピンは電源電圧に接続します。インターフェース回路図については図5を参照してください。 グラウンド・パドル。露出グラウンド・パドルは電気インピーダンスと熱抵抗の低いグランド・プレーンに接続します。

インターフェース回路図

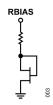


図 3. RBIAS ピンのインターフェース回路図

RFIN O—||— §

図 4. RFIN ピンのインターフェース回路図

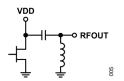


図 5. RFOUT/VDD ピンのインターフェース回路図

図 6. GND ピンのインターフェース回路図

analog.com.jp Rev. 0 | 5 of 17

代表的な性能特性

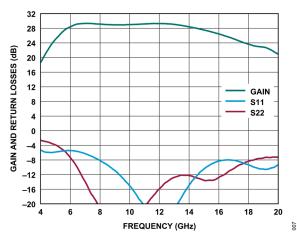


図 7. ゲインおよびリターン・ロスと周波数の関係、 $4GHz\sim20GHz$ 、 V_{DD} = 1.5V、 I_{DQ} = 35mA、 R_{BIAS} = 487Ω

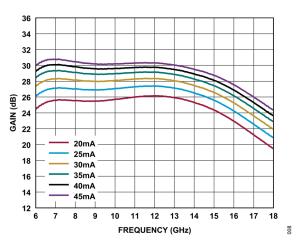


図 8. 様々な I_{DQ} におけるゲインと周波数の関係、 V_{DD} = 1.5V

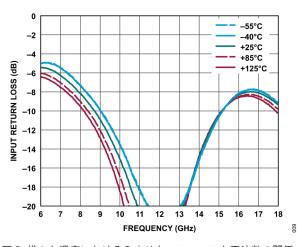


図 9. 様々な温度における入力リターン・ロスと周波数の関係、 V_{DD} = 1.5V、 I_{DQ} = 35mA、 R_{BIAS} = 487 Ω

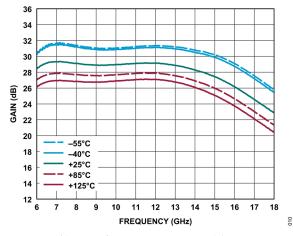


図 10. 様々な温度におけるゲインと周波数の関係、 V_{DD} = 1.5V、 I_{DQ} = 35mA、 R_{BIAS} = 487 Ω

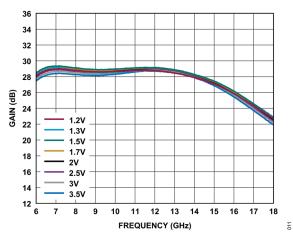


図 11. 様々な電源電圧におけるゲインと周波数の関係、 I_{DQ} = 35mA

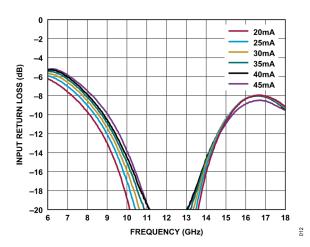


図 12. 様々な I_{DQ} における入力リターン・ロスと周波数の関係、 V_{DD} = 1.5V

analog.com.jp Rev. 0 | 6 of 17

代表的な性能特性

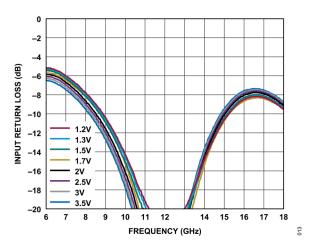


図 13. 様々な電源電圧における入力リターン・ロスと 周波数の関係、I_{DQ} = 35mA

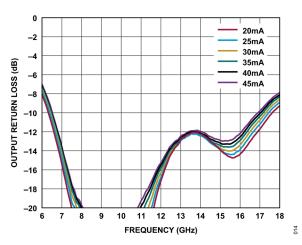


図 14. 様々な I_{DQ} における出力リターン・ロスと周波数の関係、 V_{DD} = 1.5V

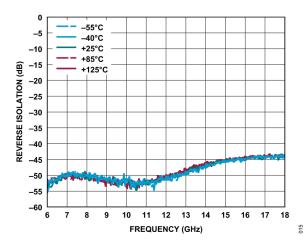


図 15. 様々な温度におけるリバース・アイソレーションと 周波数の関係、 V_{DD} = 1.5V、 I_{DQ} = 35mA、 R_{BIAS} = 487 Ω

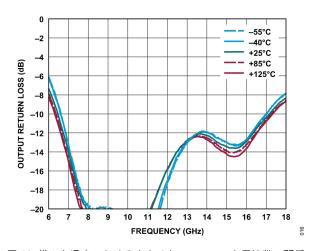


図 16. 様々な温度における出力リターン・ロスと周波数の関係、 V_{DD} = 1.5V、 I_{DQ} = 35mA、 R_{BIAS} = 487 Ω

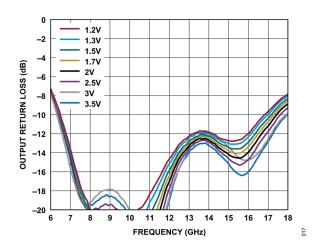


図 17. 様々な電源電圧における出力リターン・ロスと 周波数の関係、I_{DQ} = 35mA

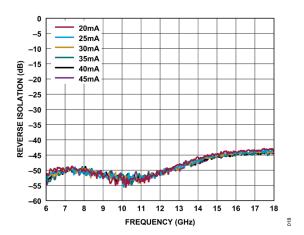


図 18. 様々な I_{DQ} におけるリバース・アイソレーションと 周波数の関係、 V_{DD} = 1.5V

analog.com.jp Rev. 0 | 7 of 17

代表的な性能特性

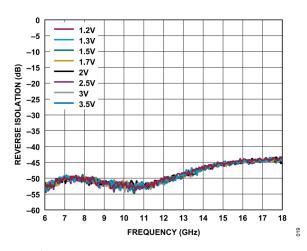


図 19. 様々な電源電圧におけるリバース・アイソレーションと 周波数の関係、I_{DQ} = 35mA

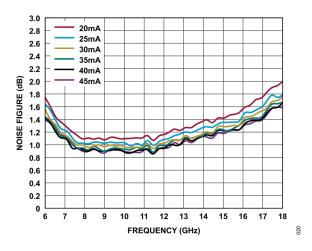


図 20. 様々な I_{DQ} におけるノイズ指数と周波数の関係、 V_{DD} = 1.5V

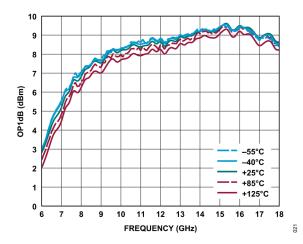


図 21. 様々な温度における OP1dB と周波数の関係、 V_{DD} = 1.5 V_{C} V_{DD} = 35mA、 V_{BIAS} = 487 Ω

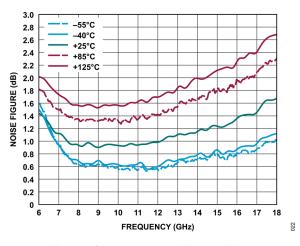


図 22. 様々な温度におけるノイズ指数と周波数の関係、 V_{DD} = 1.5V、 I_{DQ} = 35mA、 R_{BIAS} = 487 Ω

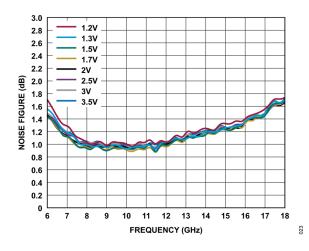


図 23. 様々な電源電圧におけるノイズ指数と周波数の関係、 I_{DQ} = 35mA

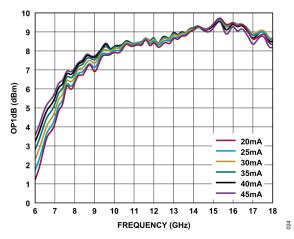


図 24. 様々な I_{DQ} における OP1dB と周波数の関係、 V_{DD} = 1.5V

analog.com.jp Rev. 0 | 8 of 17

代表的な性能特性

図 25. 様々な電源電圧における OP1dB と周波数の関係、 $I_{DQ}=35 mA$

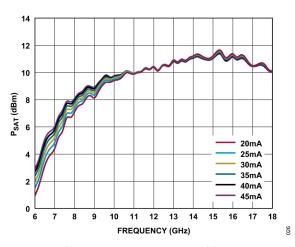


図 26. 様々な I_{DQ} における P_{SAT} と周波数の関係、 V_{DD} = 1.5V

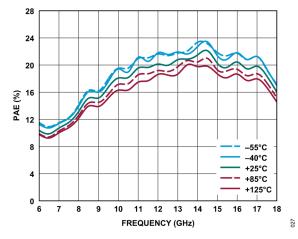


図 27. 様々な温度における P_{SAT} で測定した PAE と 周波数の関係、 V_{DD} = 1.5V、 I_{DQ} = 35mA、 R_{BIAS} = 487 Ω

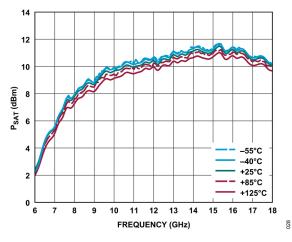


図 28. 様々な温度における P_{SAT} と周波数の関係、 V_{DD} = 1.5V、 I_{DQ} = 35mA、 R_{BIAS} = 487 Ω

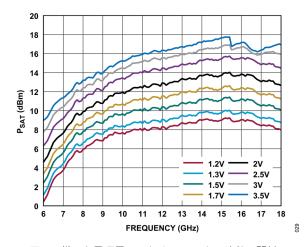


図 29. 様々な電源電圧における P_{SAT} と周波数の関係、 I_{DQ} = 35mA

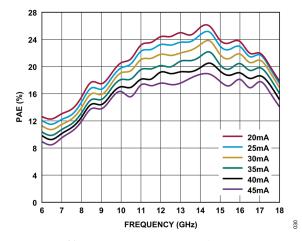


図 30. 様々な I_{DQ} における P_{SAT} で測定した PAE と 周波数の関係、 V_{DD} = 1.5V

analog.com.jp Rev. 0 | 9 of 17

代表的な性能特性

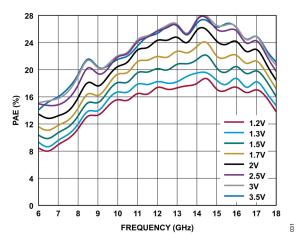


図 31. 様々な電源電圧における P_{SAT} で測定した PAE と 周波数の関係、 I_{DQ} = 35mA

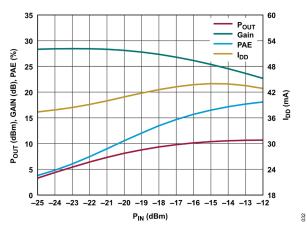


図 32. P_{OUT} 、ゲイン、PAE、 I_{DD} と P_{IN} の関係、 10GHz でパワー圧縮、 V_{DD} = 1.5V、 R_{BIAS} = 487Ω

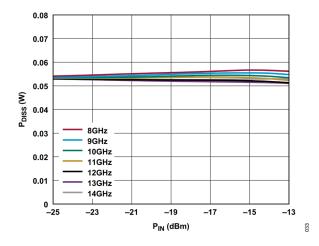


図 33. 様々な周波数における P_{DISS} と P_{IN} の関係、 T_{CASE} = 85°C、 V_{DD} = 1.5V

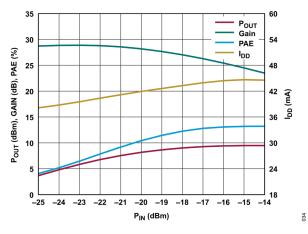


図 34. P_{OUT} 、ゲイン、PAE、 I_{DD} と P_{IN} の関係、 8GHz でパワー圧縮、 V_{DD} = 1.5V、 R_{BIAS} = 487Ω

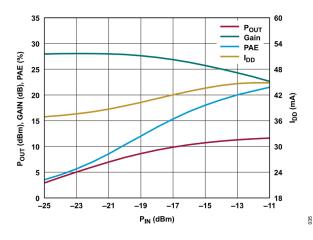


図 35. P_{OUT} 、ゲイン、PAE、 I_{DD} と P_{IN} の関係、 14GHz でパワー圧縮、 V_{DD} = 1.5V、 R_{BIAS} = 487 Ω

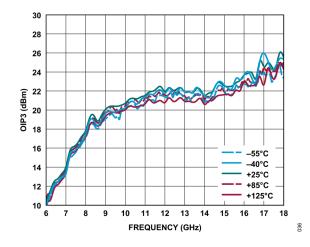


図 36. 様々な温度における OIP3 と周波数の関係、 V_{DD} = 1.5V、 I_{DQ} = 35mA、 R_{BIAS} = 487 Ω

analog.com.jp Rev. 0 | 10 of 17

代表的な性能特性

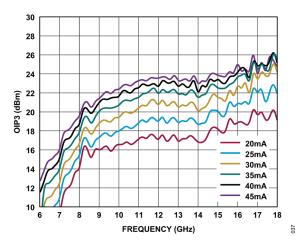


図 37. 様々な I_{DQ} における OIP3 と周波数の関係、 V_{DD} = 1.5V

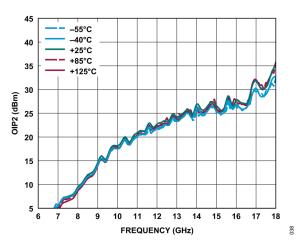


図 38. 様々な温度における OIP2 と周波数の関係、 V_{DD} = 1.5V、 I_{DQ} = 35mA、 R_{BIAS} = 48 $T\Omega$

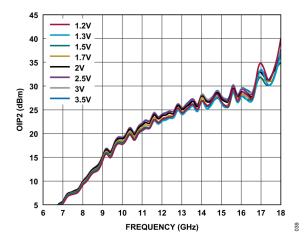


図 39. 様々な電源電圧における OIP2 と周波数の関係、 I_{DQ} = 35mA

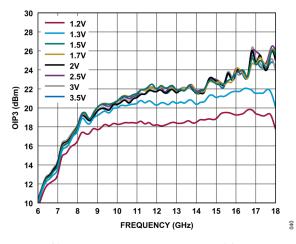


図 40. 様々な電源電圧における OIP3 と周波数の関係、 I_{DQ} = 35mA

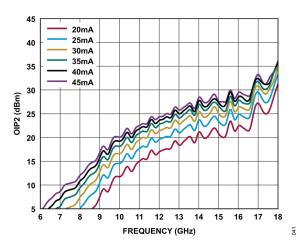


図 41. 様々な I_{DQ} における OIP2 と周波数の関係、 V_{DD} = 1.5V

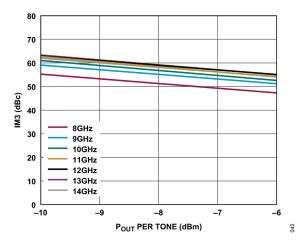


図 42. 様々な周波数における 3 次相互変調(IM3)とトーンあたり P_{OUT} の関係、 V_{DD} = 1.5V、 R_{BIAS} = 487Ω

analog.com.jp Rev. 0 | 11 of 17

代表的な性能特性

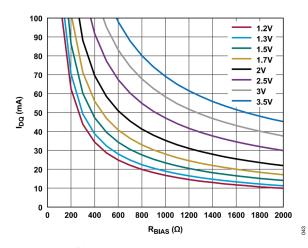


図 43. 様々な電源電圧における I_{DQ} と R_{BIAS} の関係 $0\Omega{\sim}2k\Omega$

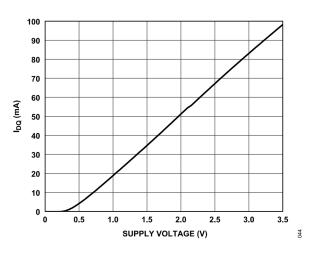


図 44. I_{DQ} と電源電圧の関係、 R_{BIAS} = 487 Ω

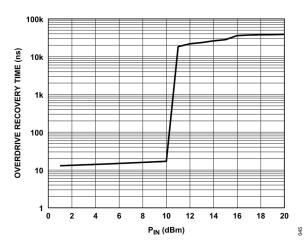


図 45. 12GHz でのオーバードライブ回復時間と P_{IN} の関係、小信号ゲイン値の 90%までの回復、 V_{DD} = 1.5V、 R_{BIAS} = 487 Ω

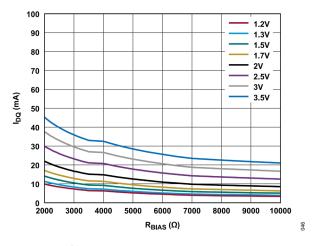


図 46. 様々な電源電圧における I_{DQ} と R_{BIAS} の関係 $2k\Omega{\sim}10k\Omega$

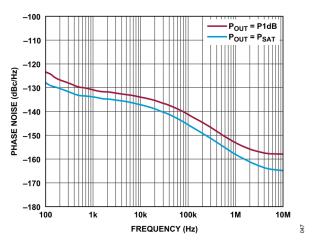


図 47. 様々な P_{OUT} 値における 10GHz での 位相ノイズと周波数の関係

analog.com.jp Rev. 0 | 12 of 17

動作原理

ADL8143 は、 $8GHz\sim14GHz$ で動作する広帯域の低ノイズ・アンプ (LNA) です。簡略化したブロック図を図 48 に示します。

ADL8143 は、仕様規定された周波数範囲で 50Ω (公称値) のインピーダンスを持つ、内部で AC カップリングされたシングルエンドの入出力ポートを備えています。RF 出力パスは AC カップリングされていますが、AC カップリング・コンデンサの RFOUT 側にグラウンドへの DC パスがあります。外付けのマッチング部品は必要ありません。 I_{DQ} を調整するために、RBIAS ピンの近くに外付け抵抗を接続します。

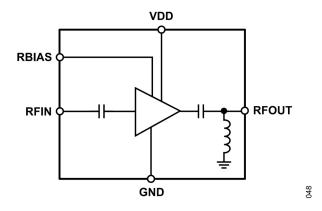


図 48. 簡略化した回路図

analog.com.jp Rev. 0 | 13 of 17

アプリケーション情報

ADL8143 を $8 \text{GHz} \sim 14 \text{GHz}$ で動作させるための基本的な接続方法を図 49 に示します。外付けのバイアス・インダクタは不要で、1.5 V 電源は VDD ピンに接続できます。 $0.1 \mu \text{F}$ と 100 pF の電源デカップリング・コンデンサを使用することを推奨します。図 49 に示す電源デカップリング・コンデンサの構成は、ADL8143 のデバイス特性の評価や検証に使用したものです。

 I_{DQ} を設定するには、RBIAS ピンと VDD ピンの間に抵抗 R2 を接続します。抵抗値はデフォルトの 487Ω とすることを推奨します。これにより、35mA の公称 I_{DQ} が得られます。また、RBIAS ピンには、 R_{BIAS} の値に応じた電流が流れます。表 8 および表 9 に、推奨 R_{BIAS} 値とそれに対応する I_{DQ} 値を示します。 RBIAS ピンはオープンのままにしないでください。

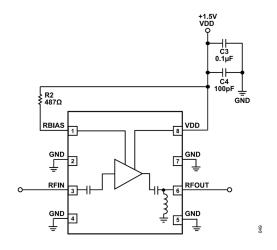


図 49. 標準アプリケーション回路

推奨バイアス・シーケンス

ADL8143 を安全に動作させるには、DC 電源と RF 電源のシーケンシングを正しく行う必要があります。パワーアップ時には、 V_{DD} を供給してから RFIN に RF 電力を供給し、電源オフ時には、RFIN への RF 電力供給を停止してから V_{DD} をパワーオフします。

表 8. 様々な I_{DQ} 値に対する推奨バイアス抵抗値、V_{DD} = 1.5V

R _{BIAS} (Ω)	I _{DQ} (mA)	I _{DQ_AMP} (mA)	I _{RBIAS} (mA)
1171	20	19.1	0.9
835	25	23.8	1.2
629	30	28.5	1.5
487	35	33.1	1.9
398	40	37.8	2.2
329	45	42.4	2.6

表 9. 様々な電源電圧に対する推奨バイアス抵抗値、Ipg = 35mA

R _{BIAS} (Ω)	V _{DD} (V)	
295	1.2	
356	1.3	
487	1.5	
652	1.7	
933	2.0	
1494	2.5	
2190	3.0	
3091	3.5	

analog.com.jp Rev. 0 | 14 of 17

高速イネーブルおよびディスエーブル機能としての RBIAS の使用

RBIAS ピンは、イネーブルおよびディスエーブル制御入力として使用できます。RBIAS ピンに単極双投(SPDT)スイッチを組み込むことにより、図 50 に示すように有効化/無効化回路を実装することができます。ADG719 相補型金属酸化膜半導体(CMOS)スイッチは RBIAS 抵抗を GND と 1.8V の間に接続するために使用されます。RBIAS 抵抗がグラウンドに接続され、

RF 入力レベルが-20dBm の場合、全体の消費電流は 1mA 未満に減少します。図 51 には、ADG719 の 1N ピンがパルス変動したときの RF 出力エンベロープのターンオンとターンオフの応答時間のプロットを示しています。なお、ADG719 の最小電源電圧が 1.8V のため、この要求を満たすために、ADG719 と ADL8143 の電源電圧は 1.5V ではなく 1.8V に設定されています。

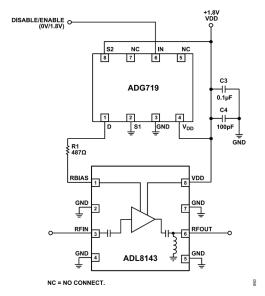


図 50. RBIAS 抵抗に 0V~1.8V のパルスを使用する 高速イネーブルとディスエーブル

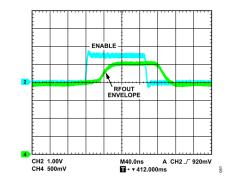


図 51. ADG719 の IN ピンにパルスを加えた場合の RF 出力エンベロープのオン/オフ応答

analog.com.jp Rev. 0 | 15 of 17

推奨パワー・マネージメント回路

図 52 に、LT3083 低ドロップアウト(LDO)レギュレータを使用する推奨パワー・マネージメント回路を示します。IN ピンには、LT3083 の出力負荷電流を供給します。 V_{CONTROL} ピンには、オンボードの制御回路の電源を供給します。 V_{CONTROL} ピンに印加する電圧は、出力電圧より 1.4V 以上高くする必要があります。図 52 では、1.5V の出力電圧に対して V_{CONTROL} は 5V に設定されていますが、2.9V まで低く設定できます。 V_{CONTROL} ピンに流れる電流は、通常、総出力電流の 1.7%です。

LT3083 は最大 3A の負荷電流を供給できます。フェーズド・アレイ・アプリケーションでは、1つのLT3083で容易に、64エレメントのアレイに使用されているADL8143のすべてにバス電力

を供給できます。3A の負荷電流をベースにすると、ドロップアウト電圧は500mV になると想定されます。必要な負荷電流がこれより低い場合、LT3083 の IN ピンに印加する電圧を下げることで効率を向上できます。例えば、1A の負荷電流の場合、最も厳しいケースでもドロップアウト電圧は160mV に低下します。

より低いドロップアウト電圧が要求されるアプリケーションには、LT3033 が使用できます。最も厳しい条件における LT3033 のドロップアウト電圧は、3Aの負荷で240mVです。

表 10 に、他の出力電圧を設定するために推奨される抵抗値を示します。いずれのケースも、 $V_{\rm IN}$ の最小値は 3A の負荷と $500{\rm mV}$ のドロップアウト電圧をベースに仕様規定されています。

表 10. 様々な LDO 出力電圧に対応する推奨抵抗値

LDO V _{OUT} (V)	R2 (kΩ)	Minimum V _{DD} (V)	
1.2	24.3	1.7	
1.5	30.1	2.0	
2.0	40.2	2.5	
2.5	49.9	3.0	
3.0	60.4	3.5	
3.3	66.5	3.8	
3.5	69.8	4.0	

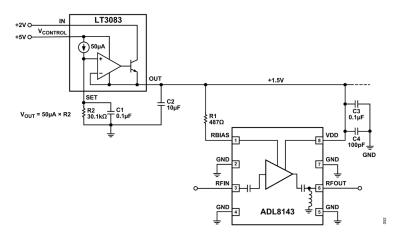


図 52. 推奨パワー・マネージメント回路

analog.com.jp Rev. 0 | 16 of 17

外形寸法

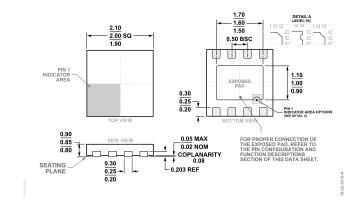


図 53. 8 ピン・リード・フレーム・チップ・スケール・パッケージ[LFCSP] 2mm × 2mm ボディ、0.85mm パッケージ高 (CP-8-30) 寸法:mm

オーダー・ガイド

Model ^{1,2}	Temperature Range	Package Description	Packing Quantity	Package Option
ADL8143ACPZN	−55°C to +125°C	8-Lead LFCSP, 2 mm × 2 mm × 0.85 mm	Tape, 1	CP-8-30
ADL8143ACPZN-R7	-55°C to +125°C	8-Lead LFCSP, 2 mm × 2 mm × 0.85 mm	Reel, 3000	CP-8-30

¹ Z = RoHS 準拠製品。

評価用ボード

Model ¹	Description
ADL8143-EVALZ	Evaluation Board

¹ Z = RoHS 準拠製品。

² ADL8143ACPZN と ADL8143ACPZN-R7 のピン仕上げは、ニッケル・パラジウム金です。