



# AD8412ARM-EVALZ

Evaluating the AD8412A, -2V to 50V Wide Input Voltage Range, 1.8MHz High Bandwidth, Current-Sense Amplifier with PWM Rejection

### **FEATURES**

- Enables quick breadboarding and prototyping.
- Easily configurable for unidirectional or bidirectional operation.
- Includes provision for current-sense shunt resistor.
- Easy connection to test equipment.
- Includes provisions for an input filter and an output filter Decoupled supply line.

### **EVALUATION KIT CONTENTS**

AD8412ARM-EVALZ evaluation board

### **DOCUMENTS NEEDED**

AD8412A data sheet

#### **GENERAL DESCRIPTION**

This user guide evaluates the AD8412A current-sense amplifier. The AD8412ARM-EVALZ is designed for easy configuration of different modes of operation and to allow flexibility with loads. A shunt resistor (R1), with a maximum standard size of 2818, can be soldered to the board.

The AD8412ARM-EVALZ accommodates the AD8412A in a mini small outline package (MSOP). The AD8412ARM-EVALZ is hereafter referred to as the AD8412A evaluation board in this user guide.

Full specifications on the AD8412A are available in the AD8412A data sheet available from Analog Devices. Consult it with this user guide when using the AD8412A evaluation board.

## AD8412A EVALUATION BOARD PHOTOGRAPHS



Figure 1. AD8412ARM-EVALZ Top View



Figure 2. AD8412ARM-EVALZ Bottom View

### **QUICK START**

By default,  $V_{REF}^{1}$  is connected to  $V_{S}$  and  $V_{REF}^{2}$  is connected to the GND pin. This split supply configuration sets the output to midsupply and allows bidirectional current sensing. Connect 5V to the  $V_{S}$  test point on the AD8412A evaluation board, connect the ground of the supply to the AGND test point on the AD8412A evaluation board, and place a 0.1V differential voltage between the +VIN test point and the -VIN test point on the AD8412A evaluation board. This small 0.1V differential input voltage represents the voltage drop across the shunt resistor used in the application.

 $V_{OUT} = (2.5V + V_{DIFF} \times GAIN))$ 

After the AD8412A evaluation board is powered, the output reads as:

(1)

(3)

 $3.5V = (2.5V + (0.1V \times 10V/V))$ (2)

Then, swap the input differential voltage leads (move the lead on the +VIN test point to the -VIN test point and move the lead on the -VIN test point to the +VIN test point). The output then reads as:

1.5V = 2.5V - 0.1V × 10V/V

#### **Power Supplies**

The *AD8412A* has a power-supply operating range from 2.9V to 5.5V. Power is applied to the V<sub>S</sub> test point. Decoupling capacitors of  $10\mu$ F and  $0.1\mu$ F are preinstalled on the AD8412A evaluation board.

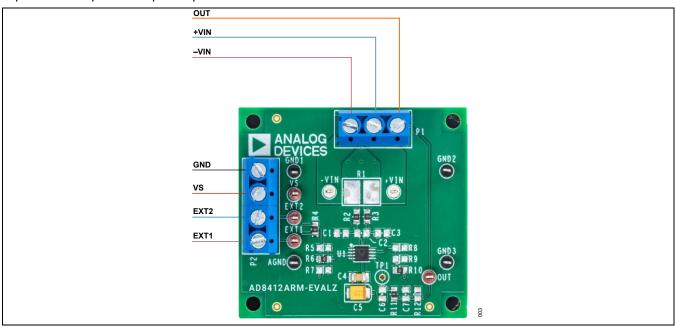



Figure 3. Connections to Terminal Blocks

#### Components

The AD8412A can be used for a variety of current monitoring applications. The AD8412A evaluation board has a provision for a current-sense shunt resistor with a maximum standard size of 2818. There are also provisions with 0805 footprints for a capacitive-load, a resistive load, an input electromagnetic interference (EMI) filter, an output filter, and provisions to set the reference voltage. Terminal blocks (P1 and P2) are provided to allow easy wiring and evaluation.

#### Setting the Reference Voltage

Three resistor spaces (R8, R9, and R10) are on the right side of the AD8412A on the AD8412A evaluation board. These three resistors are used to set  $V_{REF}^{1}$ . Fill only one of these resistor spaces at a time with a 0 $\Omega$ , 0805 resistor. See *Table* 

1 for the resistor spaces that must be filled with  $0\Omega$  to set V<sub>REF</sub><sup>1</sup>.

Three resistor spaces (R5, R6, and R7) are on the left side of the AD8412A on the AD8412A evaluation board. These three resistors are used to set  $V_{REF}^2$ . Fill only one of these resistor spaces at a time with a 0 $\Omega$ , 0805 resistor. See *Table* 2 for the resistor spaces that must be filled with 0 $\Omega$  to set  $V_{REF}^2$ .

# Table 1. VREF<sup>1</sup> Pin Connections

| Pin            | R8           | R9           | R10          |
|----------------|--------------|--------------|--------------|
| V <sub>S</sub> | Х            | ×            | $\checkmark$ |
| GND            | Х            | $\checkmark$ | ×            |
| EXT1           | $\checkmark$ | ×            | ×            |

# Table 2. VREF<sup>2</sup> Pin Connections

| Pin            | R5           | R6           | R7           |
|----------------|--------------|--------------|--------------|
| V <sub>S</sub> | Х            | ×            | $\checkmark$ |
| GND            | Х            | $\checkmark$ | Х            |
| EXT2           | $\checkmark$ | Х            | Х            |

#### **Unidirectional Operation**

For unidirectional operation, the output can be set at the negative rail (near ground) or at the positive rail (near the supply voltage) when the differential voltage is 0V. To set the AD8412A evaluation board for a ground referenced output, solder the  $0\Omega$  resistor on the left side of the AD8412A in the R6 space and the  $0\Omega$  resistor on the right side of the AD8412A in the R9 space.

To set the AD8412A evaluation board for a supply voltage referenced output, solder the  $0\Omega$  resistor on the left side of the AD8412A in the R7 space and the  $0\Omega$  resistor on the right side of the AD8412A in the R10 space.

#### **Bidirectional Operation**

For bidirectional operation, the output is typically set at half-scale for equal range in both directions. To configure the output to be at midsupply in the presence of 0A of current through the shunt resistor on the AD8412A evaluation board, solder the  $0\Omega$  resistor on the left side of the AD8412A in the R6 space and the  $0\Omega$  resistor on the right side of the AD8412A in the R10 space.

By default, the output of the AD8412A evaluation board is biased at midsupply.

*Table 3* shows which resistor must be filled with the  $0\Omega$  resistor to set the AD8412A evaluation board for different operations. In unidirectional operation, it can be ground-referenced output and supply voltage-referenced output, whereas in the bidirectional operation, the output can be set to midsupply.

### Table 3. Operation Connection

| Mode                      | R6           | R7           | R9           | R10          |  |
|---------------------------|--------------|--------------|--------------|--------------|--|
| UNIDIRECTIONAL            |              |              |              |              |  |
| Ground Referenced         | $\checkmark$ | ×            | $\checkmark$ | ×            |  |
| Supply Voltage Referenced | ×            | $\checkmark$ | ×            | $\checkmark$ |  |
| BIDIRECTIONAL             |              |              |              |              |  |
| Midsupply                 | $\checkmark$ | ×            | ×            | $\checkmark$ |  |

#### **External Referenced Output**

An external supply can also be used to set the reference voltage. To bias the output to a single external supply, solder a  $0\Omega$ , 0805 resistor in the R4 space. Then, solder the  $0\Omega$  resistor on the left side of the AD8412A in the R5 space and solder the  $0\Omega$  resistor on the right side of the AD8412A in the R8 space. The external supply voltage can then be applied to any one of the EXTx test points on the AD8412A evaluation board, and this configuration biases the output to the external supply.

The external supply can also be divided by two and used as a reference level. For this reference level, solder the  $0\Omega$  resistor on the left side of the AD8412A in the R6 space, desolder the resistor in the R4 space, and solder the  $0\Omega$  resistor on the right side of the AD8412A in the R8 space. Apply the external supply to the EXT1 test point or EXT1 terminal block input, and the output of the AD8412A is referenced to half of the external supply.

Two separate external supplies can also be used to set the reference for the output. Desolder the  $0\Omega$  resistor from the R4 space. Solder the  $0\Omega$  resistor on the left side of the AD8412A in the R5 space and solder the  $0\Omega$  resistor on the right side of the AD8412A in the R8 space. Apply the first external supply,  $V_{EXT}^{1}$ , to the EXT1 test point or EXT1 terminal block input. Apply the second external supply,  $V_{EXT}^{2}$ , to the EXT2 test point or EXT2 terminal block input. This configuration references the output to:

$$\frac{(V_{EXT1} + V_{EXT2})}{2} \tag{4}$$

#### Input Filter

The AD8412A evaluation board includes provisions for the components necessary for an input filter. By default, R2 and R3 are  $0\Omega$ , 0805 resistors, and C1, C2, and C3 are left unpopulated. It is required to filter at the input of the device to reduce EMI. The EMI specifications vary depending on the application. Filtering at the input must be preferred if the output cannot be filtered, because filtering at the output changes the low output impedance seen by the components attached to the output of the AD8412A. The +IN and –IN inputs of the AD8412A have balanced input bias currents. This means the input series resistors, R2 and R3, must be the same measured value to not have a large offset voltage added on the output of the device because of R2 and R3. It is recommended to keep R2 and R3 below 100 $\Omega$ .

The EMI filter has two different bandwidths: common-mode ( $BW_{CM}$ ) and differential ( $BW_{DIFF}$ ). The differential bandwidth defines the frequency response of the filter with a differential input signal applied between the two inputs of the amplifier, which are +IN and -IN. C1 and C3 must be the same value for the following equations.

The -3 dB differential bandwidth for the filter is:

$$BW_{DIFF} = \frac{1}{2\pi \times R2 \times ((2 \times C2 + C1))}$$
(5)

The common-mode bandwidth defines what a common-mode RF signal experiences between ground and the +IN and – IN inputs of the amplifier tied together.

The -3 dB common-mode bandwidth for the filter is:

$$BW_{CM} = \frac{1}{2\pi \times R2 \times C1} \tag{6}$$

Keep the resistor values to a 1% tolerance and the filter capacitors to a 5% tolerance to assist with reducing AC commonmode rejection (CMR) errors. Choose C2 to be at least 10× larger than C1 or C3 to reduce AC CMR errors, which are caused by component mismatching.

*Figure 1* shows the top view and *Figure 2* shows the bottom view of the AD8412A evaluation board. *Figure 4* shows the default schematic of the AD8412A evaluation board. The dotted lines in *Figure 4* are routed under the printed circuit board (PCB).

# AD8412A EVALUATION BOARD SCHEMATIC

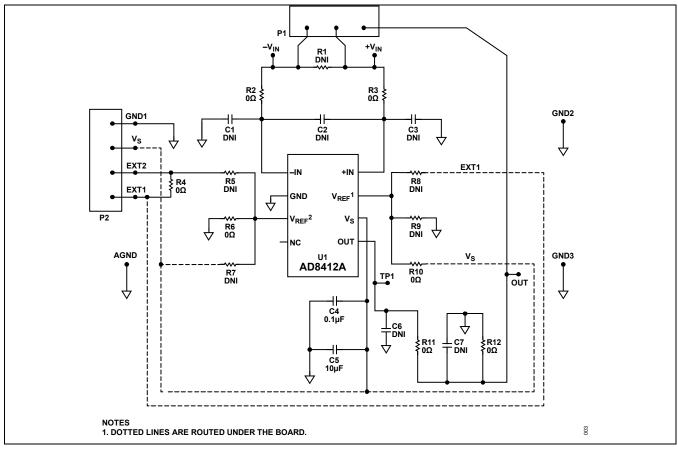



Figure 4. AD8412A Evaluation Board Schematic

# **Ordering Information**

# Table 4. Bill of Materials

| Item | Quantity | Reference Designator      | Part Description                                                                                                          | Manufacturer, Part Number            |  |
|------|----------|---------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--|
| 1    | 1        | A1                        | IC, high voltage, high bandwidth, current-sense amplifier, automotive                                                     | Analog Devices Inc.,<br>AD8412ABRMZ  |  |
| 2    | 2        | +VIN, -VIN                | Connectors-PCB, test point white                                                                                          | Keystone Electronics, 5002           |  |
| 3    | 4        | AGND, GND1, GND2,<br>GND3 | Connectors-PCB, test point black                                                                                          | Keystone Electronics, 5001           |  |
| 4    | 1        | C4                        | Capacitor, ceramic, 0.1µF, 50V,<br>10%, X7R, 1206                                                                         | Yageo, CC1206KRX7R9BB10              |  |
| 5    | 1        | C5                        | Capacitor, tantalum, 10µF, 16V,<br>10%, 3528-20                                                                           | AVX Corporation,<br>TAJB106K016RNJ   |  |
| 6    | 4        | EXT1, EXT2, OUT, VS       | Connectors-PCB, test point red                                                                                            | Keystone Electronics, 5000           |  |
| 7    | 1        | P1                        | Connector-PCB, terminal block<br>vertical, 5mm pitch                                                                      | On Shore Technology,<br>OSTTC030162  |  |
| 8    | 1        | P2                        | Connector-PCB, terminal block,<br>5mm pitch, 3.5mm solder tail                                                            | On Shore Technology,<br>OSTTC040162  |  |
| 9    | 6        | R2, R3, R4, R6, R10, R11  | Resistors, SMD, 0Ω, 1/10 W, 0805                                                                                          | Multicomp (SPC), MC 0.1 W<br>0805 0R |  |
| 10   | 4        | Standard Grip             | Miscellaneous, bumper cylindrical,<br>size 0.312" diameter (7.92mm),<br>thickness 0.215" (5.46mm), black<br>with adhesive | 3M, SJ61A6                           |  |
| 11   | 5        | C1, C2, C3, C6, C7        | Not installed, capacitors, C0805                                                                                          | NA                                   |  |
| 12   | 1        | R1                        | Not installed, resistor, 2818                                                                                             | NA                                   |  |
| 13   | 5        | R5, R7, R8, R9, R12       | Not installed, resistors, R0805                                                                                           | NA                                   |  |
| 14   | 1        | TP1                       | Not installed, connector-PCB, test<br>point black                                                                         | NA                                   |  |

# **Revision History**

| REVISION | REVISION | DESCRIPTION     | PAGES   |
|----------|----------|-----------------|---------|
| NUMBER   | DATE     | DESCRIPTION     | CHANGED |
| 0        | 01/25    | Initial release | —`      |

### Notes

ALL INFORMATION CONTAINED HEREIN IS PROVIDED "AS IS" WITHOUT REPRESENTATION OR WARRANTY. NO RESPONSIBILITY IS ASSUMED BY ANALOG DEVICES FOR ITS USE, NOR FOR ANY INFRINGEMENTS OF PATENTS OR OTHER RIGHTS OF THIRD PARTIES THAT MAY RESULT FROM ITS USE. SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE. NO LICENSE, EITHER EXPRESSED OR IMPLIED, IS GRANTED UNDER ANY ADI PATENT RIGHT, COPYRIGHT, MASK WORK RIGHT, OR ANY OTHER ADI INTELLECTUAL PROPERTY RIGHT RELATING TO ANY COMBINATION, MACHINE, OR PROCESS, IN WHICH ADI PRODUCTS OR SERVICES ARE USED. TRADEMARKS AND REGISTERED TRADEMARKS ARE THE PROPERTY OF THEIR RESPECTIVE OWNERS. ALL ANALOG DEVICES PRODUCTS CONTAINED HEREIN ARE SUBJECT TO RELEASE AND AVAILABILITY.