

VISIT ANALOG.COM

Technical Article

Factory of the Future:
Making Decisions at
the Edge Using
Sensors with Artificial
Intelligence—Part 2
Tom Sharkey , Systems Applications Engineer

Abstract
There are multiple approaches to adding more intelligence to industrial sys-
tems, including edge and cloud artificial intelligence (AI) matched to sensors
with analog and digital components. With the diversity of AI approaches, the
sensor designer needs to consider several competing requirements, including
latency for decision-making, network usage, power consumption/battery life,
and AI model fit for machines. The previous article focused on the overview and
hardware design of Voyager4: a wireless, AI-based condition monitoring sensor.
This article will focus on the software architecture and AI algorithm created for
an intelligent edge sensor. A complete system-level approach for AI model devel-
opment on the Voyager4 will be described.

Software Design of a Condition Monitoring Sensor
Voyager4 is a wireless condition monitoring platform developed by Analog Devices to
enable developers to rapidly deploy and test a wireless solution to a machine or test
setup. Motor health monitoring solutions such as Voyager4 are used across the indus-
try in fields such as robotics and rotating machines such as turbines, fans, pumps,
and motors.

Developing the software for such a wireless edge device can be difficult. From early
in the sensor’s design, the developer must consider the overall system architecture,
accounting for how individual parts of the system will operate, how the different com-
ponents will be integrated to work together, and how useful algorithms and analysis
tools such as neural networks can be applied and deployed to add intelligence to
the edge.

The goal for any such project is to create software for the edge device and the con-
nected host, which is easy to understand, modifiable, and upgradable. Within Voyager4,
there are two microcontrollers and many peripheral devices including sensors, power
management boards, flash memory, and communication interfaces. Developing the
code required to control and combine each of these pieces is a daunting task.

The hope for this article is that by showcasing the design process that was used during
Voyager4’s development, highlighting the steps taken and giving some specific imple-
mentation examples, the reader can form a better understanding of how to develop
their own edge sensor.

This is Part 2 of a 3-part article series documenting the development of the Voyager4
condition monitoring platform.

 X Part 1 of this article series introduces the Voyager4 wireless condition moni-
toring sensor, including key elements of sensor architecture, hardware design,
power profiling, and mechanical integration.

 X Part 2 of this article series will focus on the software architecture and AI
algorithm. A complete system-level approach for AI model development and
deployment on the Voyager4 will be described.

 X Part 3 of this article series will look at the practical implementation of the AI
algorithm and the different faults Voyager4 can detect such as imbalance,
misalignment, and bearing defects.

Overview
While a brief recap of the Voyager’s operation is given here, refer to Part 1 of
the article series for more information on condition monitoring sensors and
greater detail on the unique hardware, power, and security features of the
Voyager4 project.

https://www.analog.com
https://www.analog.com/
https://www.analog.com/en/resources/evaluation-hardware-and-software/evaluation-boards-kits/voyager4.html
https://ez.analog.com
https://www.youtube.com/user/AnalogDevicesInc
https://twitter.com/adi_news
https://www.linkedin.com/company/analog-devices
https://www.facebook.com/AnalogDevicesInc
https://flipboard.com/@AnalogDevices

2 FACTOry OF ThE FUTUrE: MAkING DECISIONS AT ThE EDGE USING SENSOrS wITh ArTIFICIAL INTELLIGENCE—PArT 2

MEMS
(Wake Up at

Predefined Interval)

Processor
with Edge AI

[a] MEMS Training Data

[b] MEMS Data for
Anomaly Prediction

[c] User Alert for
Machine Anomaly

[d] No Anomaly Predicted,
Sensor Goes Back to MEMS
Sleep Mode

User Data
and Alerts

Processor
with BLE, USB

Figure 1. Voyager4 modes of operation.

The sensor operating principle for Voyager4 is presented in Figure 1. The ADXL382
triaxial 8 kHz digital micro electromechanical system (MEMS) accelerometer is
used to gather vibration data. Based on the mode of operation, the data gathered
may follow several different paths.

Path A is the path initially taken with raw vibration data being sent directly to the
MAX32666 Bluetooth® low energy (BLE) processor. From here, the data can be sent
to the user over BLE radio, or via USB. Path B is an alternative mode of operation
that can be used once raw data has been gathered using the Voyager and a model
is trained using the MAX78000 external tools. Data is not sent to the user but is
instead passed to an edge AI algorithm to predict faulty machine data. Paths C and
D cover the use cases in which a motor fault is detected or not detected, respec-
tively. If a fault is detected, a flag or user alert may be sent via the BLE processor
to the host. If a fault is not detected, the sensor instead goes back into Sleep Mode
until the next detection event.

This architecture is the focus for the software and AI algorithm development for
Voyager4. For a complete system-level understanding of this architecture, this
article will discuss:

 X BLE terminology
 X Implementation of BLE peripheral
 X Implementation of BLE central
 X Training and deployment of the AI algorithm

BLE Background
When designing an industrial edge sensor, connectivity is one of the key design
factors. This affects everything from range and reliability to the overall life-
time and size of the device, based on the power available/required. As shown in
Table 1, BLE has some unique advantages when compared to other connectivity
standards. Range, power, and reliability of BLE were particularly important to our
use case of industrial monitoring. To understand the design and development of
a BLE edge device, you must first understand some of the basic terminology used
by any BLE project.

Table 1. Comparison of Wireless Connectivity Standards

Range
Power
Consu-
mption

Relia-
bility

Robust-
ness

Total
Cost of
Owner-

ship

MESH
Capable Security

Wi-Fi 100 m High

Low
single

RF
channel

Low High Yes Yes,
WPA

BLE 20 m to
100 m

Low/
medium

Medium/
high Low Medium Yes Yes, AES

Zigbee,
Thread

20 m to
200 m

Low/
medium Low Low Medium Yes Yes, AES

Smart-
MESH

20 m to
200 m Low High High Low Yes Yes, AES

LoRa-
WAN

500 m
to

3000 m
Medium Low Low High

No –
Star

Topo-
logy

Yes, AES

A thorough explanation of all that BLE has to offer would fill a book, so instead
this article focuses on some of the key concepts that anyone implementing a BLE
device needs to consider, namely:

 X Software stack
 X Peripheral/central model
 X Protocols and profiles

BLE Software Stack
The BLE software stack is a collection of standard protocols that must be imple-
mented by a device for it to be considered BLE compatible. The name is more
easily understood in Figure 2, by illustrating how different protocols within the
stack are layered. High level functionalities like user communication and device

https://www.analog.com/en/products/adxl382.html
https://www.analog.com/en/products/max32666.html
https://github.com/analogdevicesinc/ai8x-training

VISIT ANALOG.COM 3

connection are supported by lower level protocols responsible for fundamental
tasks such as data encapsulation and parsing.

Fortunately, a basic understanding of the components of the stack is often
enough for developers, who can choose from a range of hardware devices that
have implemented their own versions of this. This requires the user to simply
develop part of the application that will control the device itself while making use
of a prebuilt BLE stack.

Application

Host

GAP GATT

ATTL2CAP

Controller

LL PHY

Host Controller
Interface (HCI)

Figure 2. A BLE stack.

The BLE stack is often represented as three distinct parts: application, host,
and controller. The application defines the interface to the user and the specific
application code (vibration monitoring) that the user is implementing. The host
refers to the upper layers of the BLE software stack, which controls the high level
functionality such as profiles and protocols. The controller refers to the lower
layers of the BLE stack, which deals with the link layer and the physical layer like
the 2.4 GHz radio itself. For this project, the MAX32666 BLE microcontroller was
chosen. This is a low power Arm® Cortex®-M4 microcontroller with a Bluetooth 5 LE
radio with support for long range (4×) and high data throughput (2 Mbps).

Peripheral/Central Model
A BLE device may be defined as either a peripheral or a central depending on
its role. As data can flow in both directions, one of the biggest differentiators
between the two is in how they connect. Before connection, peripherals advertise
their availability to connect. Central devices scan for available peripherals to con-
nect to and initiate the connection. Data may flow in both directions between
peripheral and central, but the central is regarded as the host. Older BLE refer-
ences also refer to peripherals and centrals as servers and clients, respectively.

Peripheral Device
(Voyager Sensor)

Peripheral Device
(Voyager Sensor)

Central Device
(PC, Phone)

Peripheral Device
(Voyager Sensor)

Figure 3. A peripheral/central 1:1 model.

In our system, the Voyager platform is defined as our peripheral, which gathers
and sends data to a central. For this project, to simplify development and for ease
of understanding, initially the focus is on the simplest case of a single central
interacting with a single peripheral as shown in Figure 3.

Protocols and Profiles
Protocols and profiles are an easily confused portion of Bluetooth’s naming termi-
nology. Simply stated, protocols are basic functional building blocks that define
device operation: data encapsulation, format, routing, etc. Profiles are bundles of
functionality that combine to enable basic modes of operation. It is essentially
a combination of protocols to achieve a certain overall function, for example, a
battery service profile, which can be used to interrogate the remaining battery
of a device. The all-important Generic Access Profile (GAP) and Generic ATTribute
Profile (GATT) must be implemented by all BLE devices to allow them to connect
to other BLE devices. GAP covers the low level functionality—advertising, device
discovery, and managing connections. GATT manages the high level data orga-
nization and transfer between devices, allowing them to read and write over an
established connection.

Other profiles are optional add-ons for additional functionality to a device like
a Proximity Profile. This includes predefined profiles created by the Bluetooth
Special Interest Group (SIG). Using a predefined set of profiles may be useful when
developing a typical device such as a smart watch or smart meter but can be
restrictive for devices that implement a lot of custom functionality.

Custom profiles not defined by the Bluetooth SIG are also permitted, giving greater
design flexibility at the cost of portability. Each profile organizes its data into ser-
vices, which consists of several characteristics as shown in Figure 4.

Profile

Service

Characteristic

Command Server Profile

UUID

Properties

Value

Descriptor

Read, Write, Notify

Command Response

UUID

Metadata

Figure 4. A custom command server profile.

When a connection is formed between central and peripheral, the central device
can request the profiles and services associated with that peripheral. Figure 5
shows the structure of the GAP, GATT, and custom profiles (and their services) of
Voyager when requested by central.

Figure 5. A voyager profile structure.

https://www.analog.com

4 FACTOry OF ThE FUTUrE: MAkING DECISIONS AT ThE EDGE USING SENSOrS wITh ArTIFICIAL INTELLIGENCE—PArT 2

For Voyager, we define the basic GAP and GATT profiles in addition to a single
custom profile that is used as a command server, where commands from the
central are processed and data is returned or the configuration of the peripheral
itself is updated.

Firmware Implementation
The BLE microcontroller is the heart of the system, ensuring that data from all the
peripheral sensors and devices is available for retrieval or modification by the
connected BLE central.

Device Configuration
With the BLE stack prebuilt on the MAX32666, we build our peripherals’ appear-
ance by filling out the relevant configuration functions. For example, in Figure 6,
we provide a data length, advertising type, and a list of characters to our scan
data discovery array, which is called in our peripheral setup function every time
the Voyager is powered up.

Figure 6. Setting Voyager scanning data.

A BLE device such as this will have a huge number of settings to configure, includ-
ing transmission power from the radio and return data types. It is advisable to
start with any prebuilt examples available with the hardware you are using and
to make custom modifications from there. The MAX32666 offers an example code
for a BLE data server (peripheral) called BLE DATS that was used as the basis
for the Voyager project. After configuration, when the central scans for available
devices, the peripheral’s name appears as Voyager. This can also be used to filter
the search list so that the central displays only devices of the expected name. As
seen in Figure 7, the device name is displayed alongside the device MAC address
and the received signal strength indicator (RSSI).

Figure 7. A central view of Voyager.

Other configuration settings within the stack control the expected names and
behaviors for other modes of the device such as manufacturer ID, responses to
read/write commands, etc.

MAX17262
Battery
Gauge

External
Flash

(Optional)

ADXL367
Wake-Up

MEMS

DS28C40A
Secure

Authenticator

MAX38642
Power
 Buck

MAX32666
BLE Radio

FTDI
FT234XD-R

MAX20335
Power
PMIC

ADXL382
CbM MEMS

ADG1634
Switch

MAX3207E
TVS Diode

MAX78000
Artificial

Intelligence
Microcontroller

MEMS
Microphone

(Optional)

L1OUT
L2OUT
L3OUT
B1OUT

B2OUT 1.2 VOUT

L1OUT
L2OUT
L3OUT

PMIC Power Supply Rails
B1OUT
B2OUT/1.2 VOUT

Figure 8. The Voyager4 hardware block diagram using the MAX3207E, DS28C40A, ADXL382,
ADG1634, MAX32666, ADXL367, MAX78000, MAX17262, MAX20335, and MAX38642.

The Command Server
As the central and peripheral sides of the Voyager4 application were designed
in tandem, the peripheral interface can be simplified by making use of a cus-
tom profile with a single BLE service. This profile will be responsible for receiving
commands from the central device and returning responses in the form of accel-
erometer data, temperature data, and other device information.

This single custom service is unorthodox for BLE communication in a device as
complex as Voyager but has several benefits. It enables backward compatibility
between Voyager versions and improves command flexibility, as using strings as
the command input to the Voyager peripheral allows for a variety of command
types and values based on how the data is parsed.

Once a connection is formed between peripheral and central, to establish bidi-
rectional communication the central will issue a notify command to the custom
characteristic as seen in Figure 11. This establishes a notification system on the
peripheral side and assigns a corresponding callback function on the central side.
This means that any time there is updated data assigned to that custom charac-
teristic, the central device is notified, the new data is transferred, and the central
device’s callback function is triggered.

Firmware Architecture
The hardware diagram in Figure 8 shows the array of content, included in the
Voyager, and the relative data paths and power supplies. Most of the software
development took place on the BLE microcontroller, as this operates as the

https://www.analog.com/en/products/max3207e.html
https://www.analog.com/en/products/ds28c40.html
https://www.analog.com/en/products/adg1634.html
https://www.analog.com/en/products/adxl367.html
https://www.analog.com/en/products/max17262.html
https://www.analog.com/en/products/max20335.html
https://www.analog.com/en/products/max38642.html

VISIT ANALOG.COM 5

command center, coordinating both the BLE interface to the device and the inter-
nal pipeline of sensor and microcontroller data. To interact with the different sen-
sors and micros in our system, we must develop device drivers to be used by the
BLE microcontroller, and the AI microcontroller as discussed in the AI section. In
practice, the development and integration of these drivers is a large portion of the
coding work required for a connected edge sensor.

Writing Portable Code
While developing our firmware we divided the code into several layers of abstrac-
tion, separating the specific details for one specific microcontroller from the
application and driver code. This is a well understood problem and is often tack-
led by separating code responsibility into three distinct layers in addition to the
application layer. These are the hardware abstraction layer (HAL), board support
package (BSP), and the driver layer. This architecture is shown in Figure 9.

Application

BSP

HAL

Driver

Figure 9. A generic BSP-HAL architecture.

The HAL provides a uniform way for programs to interact with different hard-
ware without needing to know the details of each device. The BSP defines the
hardware-dependent software, and the driver layer defines the finer details of
individual devices such as register mapping. For example, within Voyager we
have two microcontrollers, the MAX32666 for BLE connectivity, and the MAX78000
with an on-board convolutional neural network (CNN) accelerator. As shown in
Figure 10, the HAL in Voyager defines the most basic communication commands
that will be used by either of the microcontrollers, SPI and I2C. As an example, any
SPI call issued by any of the device drivers will initially defer responsibility to the
SPI functions in the HAL, which then looks up the specific information for the BSP
to use the correct SPI command for that microcontroller.

The HAL remains the same for every board in the system, but the BSP is updated
for each microcontroller. The BSP is also responsible for defining the generic
building blocks of the system, which decouple application calls from the specific
device used. In Figure 10, the MAIN_ADXL block in the BSP is an abstraction from
the underlying accelerometer used. Common commands for any accelerometer
such as Initialize and Read are defined within the BSP layer, while low level func-
tions such as get_raw_xyz_data are defined at the driver level in the ADXL382
block. When porting the driver code from the MAX32666 to the MAX78000 micro-
controller, the accelerometer code remains unchanged as it relates only to the
accelerometer itself. The only files updated to allow communication with the new
microcontroller are within the BSP layer.

This also has clear benefits in terms of replacing or upgrading parts in the sys-
tem. One real example of this within Voyager was the decision to upgrade the
main accelerometer used. In this case, only the code within the driver layer was
updated, simplifying maintenance, modification, and testing.

BSP

App

HAL_SPI HAL_I2C

HAL

BSP_SPI

GPIO UART

BSP_I2C

Comms

Main_AdxlWake_ADXL

BatMon PwrMgr

Sensors

ADXL367 ADXL382MAX20335MAX17262

Drivers

Figure 10. The Voyager BSP HAL architecture.

Data Pipeline and BLE Central
While temperature and battery information are made available to the BLE central
application on request, Voyager’s primary role is as a condition monitor and vibra-
tion sensor. Our requirements in terms of data throughput and how often data
must be sent will be focused on the vibration sensor and a typical condition moni-
toring setup, for instance, one short measurement once a day. BLE does not allow
a high data throughput. The ADXL382 is a high bandwidth, 3-axis accelerometer
gathering 16,000 samples per axis every second in high performance mode. There
are a few available options for sending data based on the components included
in the system.

Sending Live Data
Without any form of buffering, send data as soon as it is available while it is
being requested by the central. While this is useful as a demo mode, showcas-
ing the high performance accelerometer data in real time, the battery is quickly
consumed, and data packets are dropped or corrupted as the amount of data
generated exceeds the rate at which it can be sent.

Sending Data from Memory
Another option is to save the data to flash memory. In this way, we can safely
record the accelerometer data without fear of overwriting previous values. The
saved data is then sent directly to the central or reported out upon receiving a
command from the central. As this system is no longer real time (data could be
minutes or even days old), we can also make use of the BLE acknowledgment
system for packets, ensuring that data arrives fully intact at the central, and
resending any lost data.

This solution is much more practical for a typical industrial condition monitoring
setting, but the device’s battery life is mostly wasted sending vibration informa-
tion that does not change much day to day.

https://www.analog.com
https://www.analog.com/en/products/max78000.html

6 FACTOry OF ThE FUTUrE: MAkING DECISIONS AT ThE EDGE USING SENSOrS wITh ArTIFICIAL INTELLIGENCE—PArT 2

Performing Analysis at the Edge
To save on battery life, it is better to perform some analysis at the edge to ensure
that only relevant data is communicated over the radio link. Of course, this is
only possible if the power required to create meaningful insights at the edge
is significantly less than that required to send the data over BLE (see Part 1 of this
article series for further information on this).

In Figure 8, you can see that the accelerometer has a direct data path to both
microcontrollers. In the use case where we will perform some analysis at the
edge, the AI microcontroller can directly read vibration data from the accelerom-
eter and perform an analysis with an onboard AI model.

Peripheral

Send

Central

Start Notify

Parse Data

Handle_rx

Issue
Command

Notification
(Sender, Data)

!
Notify: Callback

Device Info

Battery

Temperature

Custom
Service

Command
Interpreter

Data

x,y,z Data

Accelerometer

Write: Command

Figure 11. The Voyager central peripheral architecture.

Designing the Central User Interface
As the BLE peripheral was designed in tandem with the Voyager peripheral, there
was a lot of flexibility in how the two interacted. In general, the central device
needed to scan for and connect to a Voyager peripheral, and then send string
commands and process their return values. After the initial connection, all BLE
commands are sent directly to the peripheral’s custom service for parsing. The
central in this case is a graphical user interface (GUI) on a Windows PC, written
in Python, and making use of a BLE peripheral library (BLEak) to issue standard
BLE commands. BLEak was built on top of the standard asyncio library for Python,
allowing BLE commands to run asynchronously, ensuring the user interface
remains interactable and does not freeze.

When the GUI successfully connects to a peripheral, a notify command is issued
automatically to the single custom characteristic of the Voyager as displayed in
Figure 11. This ensures that any updates to this characteristic are reported to
central. This is important, as further commands receive an acknowledgment or
response from the Voyager that indicates if they were successfully carried out.

How Is Data Requested?
Data is always requested using simple string commands. For example, central
may issue a setphy 2 command to instruct the Voyager to use its 2M radio, which
enables faster data communication at the cost of some range and reliability. The
peripheral device parses this command to ensure it is valid, before calling its own
internal setphy function with an input value of 2 to switch the radio used. If this
function is carried out successfully by Voyager, a Return: OK command is issued
back to the central device and displayed to the user.

Interpreting Accelerometer Data
Before receiving data, the user of the GUI may optionally configure the accelerom-
eter of the connected Voyager using the setadxlcfg command. Once the peripheral
issues a start command, the flow of accelerometer data from peripheral to central
begins. By default, central and peripheral devices operate in live data mode as
this is useful for demo purposes.

On the peripheral side, the internal first-in-first-out (FIFO) buffer is filled with
the latest data at the user specified sampling rate. Once the FIFO is filled, a flag
is placed on the Voyager custom service, notifying the peripheral that new data
is available. Data is then sent to and parsed by the peripheral, into formatted
arrays of acceleration data in three axes: x, y, and z. Data is always plotted, and
the user may optionally select a Save data option that also saves the same data
to a csv file for later analysis.

Figure 12. The Voyager4 central GUI plotting data.

AI Algorithm Design
The goal of this project is to detect when a motor’s health begins to degrade. AI
analysis at the edge seeks to replace or supplement human analysis of the data,
by creating metrics or characterizations of motor health, based on one or more
inputs including audio, temperature, and vibration. Vibration is by far the most
utilized in condition monitoring applications today.

Inputs
Many edge AI processors tend to be quite power hungry, which runs counter to one
of the goals of any wireless condition monitoring solution: long device lifetime.
The MAX78000 (as stated earlier) can make fast, low power AI inferences that use
less power overall than making use of the BLE radio. However, in using a low power
edge AI processor, keep in mind that the size of our neural network cannot exceed
the specifications of the board. The board features a CNN accelerator with 512 kB
of data memory. It is primarily intended for object detection, audio processing,
and time series data processing.

The available data for our solution is acceleration over time. To maximize the
performance of the trained algorithm, several preprocessing approaches were
trialled to determine which had the greatest effect on accuracy. This is discussed
in greater detail in Part 3 of this article series.

VISIT ANALOG.COM 7

Training
The process for training and deploying a neural network to the MAX78000 is well
described online through the “Analog Devices AI” GitHub. In general, a model is first
created on a host PC using conventional toolsets like PyTorch® and TensorFlow®.
This model requires training data that must be saved by the targeted device
and transferred to the PC. One subsection of the input becomes the training set
and is specifically used for training the model. A further subsection becomes a
validation set, which is used to observe how the loss function (a measure of the
performance of the network) changes during training.

Depending on the type of model used, different types and amounts of data may
be required. If you are looking to characterize specific motor faults, the model
you are training will require labeled data outlining the vibrations present when
the different faults are present in addition to healthy vibration data where no
fault is present.

Healthy Time Series

Preprocessing

Healthy Model
Training Set

Healthy Test (10%)Validation (10%) Training (80%)

Required to Train + Test Model

Figure 13. Voyager healthy training data.

Voyager was initially developed with an autoencoder type neural network.
Autoencoders do not need the data to have any labels to learn how to classify
it. While this type of model is not suited to complex fault classification, it can be
quickly trained and uses only data that the customer already has on hand like
healthy motor data.

Finding the ideal amount of data to train on is unique to every case, with sufficient
data required to learn the general trends of healthy motor data without overfitting
the data to the training input. The default example deployed with Voyager was
trained with just 30 seconds of healthy accelerometer data. The same amount

of data with an imbalance fault present was saved for verification. Both datasets
were saved directly to the training PC using the Python GUI.

Faulty
Time Series

Preprocessing

Faulty Test Set

Faulty Test

Required to Test Model

Figure 14. Voyager faulty testing data.

Before being used to train the model, the input data was pre-processed. The train-
ing script then runs through several iterations of the training sequentially and
chooses the best performing model. Some faulty input data is required for testing
purposes. You cannot train a model on healthy data and express confidence in
your results without first testing on example faulty data.

How Is the Algorithm Deployed?
Once the model is trained, it must be quantized and synthesized using ADI’s online
toolset. Quantization adjusts the weights of the generated model to a smaller set
of bins by rounding or truncation, allowing for a reduction in the memory required
to store the model. This is a standard procedure when deploying neural networks
to smaller edge devices. Synthesis converts the quantized model into c files that
can be understood by the microcontroller.

Three files are generated, which must then be copied into the active project for
the microcontroller and loaded with the next firmware update. Two of the files
(cnn.h and cnn.c) contain register writes for CNN configuration and other use-
ful functions for the model that is loaded. The third file (weights.h) contains the
trained (and quantized) model weights.

Once the new firmware is loaded, either via a wired update over the debug port, or
wirelessly with an over-the-air (OTA) update, the model has been deployed and can
be queried by the BLE microcontroller to make AI inferences on demand.

How Is It Used Once It Is Deployed?
Once the new firmware is deployed, the AI microcontroller operates as a finite
state machine, accepting and reacting to commands from the BLE controller
over SPI.

https://www.analog.com
https://github.com/MaximIntegratedAI

VISIT ANALOG.COM For regional headquarters, sales, and distributors or
to contact customer service and technical support,
visit analog.com/contact.

Ask our ADI technology experts tough questions, browse
FAQs, or join a conversation at the EngineerZone Online
Support Community. Visit ez.analog.com.

©2024 Analog Devices, Inc. All rights reserved.
Trademarks and registered trademarks are
the property of their respective owners.

TA25502-10/24

SPI Main SPI Node

MAX32666

CmdSrv

MAX78000

CmdRegistry
SPI1

Figure 15. Microcontroller SPI communication.

When an inference is requested, the AI microcontroller wakes and requests
data from the accelerometer. Importantly, it then performs the same prepro-
cessing steps to the time series data as used in the training. Finally, the output
of this preprocessing is fed to the deployed neural network, which can report
a classification.

Sample Vibration

Process Data

Send to CNN

Calculate Error

Write to Buffer

Power On

Check Systems

Perform Inference

Command and
Transmit Loop

Figure 16. AI inference state machine.

As a battery saving measure, the AI microcontroller is designed to automatically
issue an inference upon wakeup, which allows the BLE microcontroller to power it
up only when an analysis is required.

In a typical setup, the BLE microcontroller can wake from a low power sleep mode
for a short period every day, request an AI inference of the accelerometer data
present, and return to its sleep mode if the data does not pass a user-set criteria

such as the model states that the data looks healthy with 99% certainty. In the
opposite case, where data looks anomalous or cannot be confidently identified as
healthy, the BLE microcontroller can connect to a nearby BLE host and share the
data. In this way, the analysis at the edge removes the burden of understanding
the data from the host system and saves battery life as a result.

Conclusion
In this article, we introduced Voyager4, a wireless vibration monitoring system
that employs edge AI analysis to improve its intelligence and lifetime as a condi-
tion monitoring tool. Designing an effective condition monitoring sensor requires
several considerations. We discussed the hardware signal chain for Voyager4, and
the firmware that was used to integrate different system elements together in
addition to the external appearance of the device as a BLE peripheral. We also
explored the use of AI in Voyager, giving some insights into how to consider devel-
oping and deploying your edge AI models.

Read on to Part 3 of this series to learn more about the specific implementation
of the AI algorithm on board Voyager including the classification of several com-
mon motor faults.

About the Author
Tom Sharkey is a systems applications engineer working in the Industrial
Edge, Motion, and Robotics Unit at Analog Devices. Tom received a bach-
elor’s degree in electronic and computer engineering from the University
of Limerick in 2020. He has experience in condition monitoring sensors,
firmware/software design, and motor control.

Engage with the ADI technology experts in our online support community.
Ask your tough design questions, browse FAQs, or join a conversation.

 Visit ez.analog.com

https://www.analog.com
https://www.analog.com
https://www.analog.com/contact
https://ez.analog.com
https://www.analog.com
https://www.analog.com/
https://ez.analog.com
https://ez.analog.com/

	Button 42:
	Page 1:

	Button 41:
	Page 1:

	Button 40:
	Page 1:

	Button 39:
	Page 1:

	Button 38:
	Page 1:

	Button 37:
	Page 1:

