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Abstract
There are multiple approaches to adding more intelligence to industrial sys-
tems, including edge and cloud artificial intelligence (AI) matched to sensors 
with analog and digital components. With the diversity of AI approaches, the 
sensor designer needs to consider several competing requirements, including 
latency for decision-making, network usage, power consumption/battery life, 
and AI model fit for machines. The previous article focused on the overview and 
hardware design of Voyager4: a wireless, AI-based condition monitoring sensor. 
This article will focus on the software architecture and AI algorithm created for 
an intelligent edge sensor. A complete system-level approach for AI model devel-
opment on the Voyager4 will be described.

Software Design of a Condition Monitoring Sensor
Voyager4 is a wireless condition monitoring platform developed by Analog Devices to 
enable developers to rapidly deploy and test a wireless solution to a machine or test 
setup. Motor health monitoring solutions such as Voyager4 are used across the indus-
try in fields such as robotics and rotating machines such as turbines, fans, pumps, 
and motors.

Developing the software for such a wireless edge device can be difficult. From early 
in the sensor’s design, the developer must consider the overall system architecture, 
accounting for how individual parts of the system will operate, how the different com-
ponents will be integrated to work together, and how useful algorithms and analysis 
tools such as neural networks can be applied and deployed to add intelligence to  
the edge.

The goal for any such project is to create software for the edge device and the con-
nected host, which is easy to understand, modifiable, and upgradable. Within Voyager4, 
there are two microcontrollers and many peripheral devices including sensors, power 
management boards, flash memory, and communication interfaces. Developing the 
code required to control and combine each of these pieces is a daunting task.

The hope for this article is that by showcasing the design process that was used during 
Voyager4’s development, highlighting the steps taken and giving some specific imple-
mentation examples, the reader can form a better understanding of how to develop 
their own edge sensor.

This is Part 2 of a 3-part article series documenting the development of the Voyager4 
condition monitoring platform.

 X Part 1 of this article series introduces the Voyager4 wireless condition moni-
toring sensor, including key elements of sensor architecture, hardware design, 
power profiling, and mechanical integration.

 X Part 2 of this article series will focus on the software architecture and AI 
algorithm. A complete system-level approach for AI model development and 
deployment on the Voyager4 will be described.

 X Part 3 of this article series will look at the practical implementation of the AI 
algorithm and the different faults Voyager4 can detect such as imbalance, 
misalignment, and bearing defects.

Overview
While a brief recap of the Voyager’s operation is given here, refer to Part 1 of  
the article series for more information on condition monitoring sensors and 
greater detail on the unique hardware, power, and security features of the 
Voyager4 project.

https://www.analog.com
https://www.analog.com/
https://www.analog.com/en/resources/evaluation-hardware-and-software/evaluation-boards-kits/voyager4.html
https://ez.analog.com
https://www.youtube.com/user/AnalogDevicesInc
https://twitter.com/adi_news
https://www.linkedin.com/company/analog-devices
https://www.facebook.com/AnalogDevicesInc
https://flipboard.com/@AnalogDevices
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Figure 1. Voyager4 modes of operation.

The sensor operating principle for Voyager4 is presented in Figure 1. The ADXL382 
triaxial 8 kHz digital micro electromechanical system (MEMS) accelerometer is 
used to gather vibration data. Based on the mode of operation, the data gathered 
may follow several different paths.

Path A is the path initially taken with raw vibration data being sent directly to the 
MAX32666 Bluetooth® low energy (BLE) processor. From here, the data can be sent 
to the user over BLE radio, or via USB. Path B is an alternative mode of operation 
that can be used once raw data has been gathered using the Voyager and a model 
is trained using the MAX78000 external tools. Data is not sent to the user but is 
instead passed to an edge AI algorithm to predict faulty machine data. Paths C and 
D cover the use cases in which a motor fault is detected or not detected, respec-
tively. If a fault is detected, a flag or user alert may be sent via the BLE processor 
to the host. If a fault is not detected, the sensor instead goes back into Sleep Mode 
until the next detection event.

This architecture is the focus for the software and AI algorithm development for 
Voyager4. For a complete system-level understanding of this architecture, this 
article will discuss:

 X BLE terminology
 X Implementation of BLE peripheral
 X Implementation of BLE central
 X Training and deployment of the AI algorithm

BLE Background
When designing an industrial edge sensor, connectivity is one of the key design 
factors. This affects everything from range and reliability to the overall life-
time and size of the device, based on the power available/required. As shown in  
Table 1, BLE has some unique advantages when compared to other connectivity 
standards. Range, power, and reliability of BLE were particularly important to our 
use case of industrial monitoring. To understand the design and development of 
a BLE edge device, you must first understand some of the basic terminology used 
by any BLE project.

Table 1. Comparison of Wireless Connectivity Standards

Range
Power 
Consu- 
mption

Relia- 
bility

Robust- 
ness

Total 
Cost of 
Owner- 

ship

MESH 
Capable Security

Wi-Fi 100 m High

Low 
single 

RF 
channel

Low High Yes Yes, 
WPA

BLE 20 m to 
100 m

Low/
medium

Medium/
high Low Medium Yes Yes, AES

Zigbee, 
Thread

20 m to 
200 m

Low/
medium Low Low Medium Yes Yes, AES

Smart- 
MESH

20 m to 
200 m Low High High Low Yes Yes, AES

LoRa- 
WAN

500 m 
to  

3000 m 
Medium Low Low High

No – 
Star 

Topo- 
logy

Yes, AES

A thorough explanation of all that BLE has to offer would fill a book, so instead 
this article focuses on some of the key concepts that anyone implementing a BLE 
device needs to consider, namely:

 X Software stack
 X Peripheral/central model
 X Protocols and profiles

BLE Software Stack
The BLE software stack is a collection of standard protocols that must be imple-
mented by a device for it to be considered BLE compatible. The name is more 
easily understood in Figure 2, by illustrating how different protocols within the 
stack are layered. High level functionalities like user communication and device 

https://www.analog.com/en/products/adxl382.html
https://www.analog.com/en/products/max32666.html
https://github.com/analogdevicesinc/ai8x-training
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connection are supported by lower level protocols responsible for fundamental 
tasks such as data encapsulation and parsing.

Fortunately, a basic understanding of the components of the stack is often 
enough for developers, who can choose from a range of hardware devices that 
have implemented their own versions of this. This requires the user to simply 
develop part of the application that will control the device itself while making use 
of a prebuilt BLE stack.

Application

Host

GAP GATT

ATTL2CAP

Controller  

LL PHY

Host Controller
Interface (HCI)

Figure 2. A BLE stack.

The BLE stack is often represented as three distinct parts: application, host, 
and controller. The application defines the interface to the user and the specific 
application code (vibration monitoring) that the user is implementing. The host 
refers to the upper layers of the BLE software stack, which controls the high level 
functionality such as profiles and protocols. The controller refers to the lower 
layers of the BLE stack, which deals with the link layer and the physical layer like 
the 2.4 GHz radio itself. For this project, the MAX32666 BLE microcontroller was 
chosen. This is a low power Arm® Cortex®-M4 microcontroller with a Bluetooth 5 LE 
radio with support for long range (4×) and high data throughput (2 Mbps).

Peripheral/Central Model
A BLE device may be defined as either a peripheral or a central depending on 
its role. As data can flow in both directions, one of the biggest differentiators 
between the two is in how they connect. Before connection, peripherals advertise 
their availability to connect. Central devices scan for available peripherals to con-
nect to and initiate the connection. Data may flow in both directions between 
peripheral and central, but the central is regarded as the host. Older BLE refer-
ences also refer to peripherals and centrals as servers and clients, respectively.

Peripheral Device
(Voyager Sensor)

Peripheral Device
(Voyager Sensor)

Central Device
(PC, Phone)

Peripheral Device
(Voyager Sensor)

 
Figure 3. A peripheral/central 1:1 model.

In our system, the Voyager platform is defined as our peripheral, which gathers 
and sends data to a central. For this project, to simplify development and for ease 
of understanding, initially the focus is on the simplest case of a single central 
interacting with a single peripheral as shown in Figure 3.

Protocols and Profiles
Protocols and profiles are an easily confused portion of Bluetooth’s naming termi-
nology. Simply stated, protocols are basic functional building blocks that define 
device operation: data encapsulation, format, routing, etc. Profiles are bundles of 
functionality that combine to enable basic modes of operation. It is essentially 
a combination of protocols to achieve a certain overall function, for example, a 
battery service profile, which can be used to interrogate the remaining battery 
of a device. The all-important Generic Access Profile (GAP) and Generic ATTribute 
Profile (GATT) must be implemented by all BLE devices to allow them to connect 
to other BLE devices. GAP covers the low level functionality—advertising, device 
discovery, and managing connections. GATT manages the high level data orga-
nization and transfer between devices, allowing them to read and write over an 
established connection.

Other profiles are optional add-ons for additional functionality to a device like 
a Proximity Profile. This includes predefined profiles created by the Bluetooth 
Special Interest Group (SIG). Using a predefined set of profiles may be useful when 
developing a typical device such as a smart watch or smart meter but can be 
restrictive for devices that implement a lot of custom functionality.

Custom profiles not defined by the Bluetooth SIG are also permitted, giving greater 
design flexibility at the cost of portability. Each profile organizes its data into ser-
vices, which consists of several characteristics as shown in Figure 4.

Profile

Service

Characteristic

Command Server Profile

UUID

Properties

Value

Descriptor

Read, Write, Notify

Command Response

UUID

Metadata

 
Figure 4. A custom command server profile.

When a connection is formed between central and peripheral, the central device 
can request the profiles and services associated with that peripheral. Figure 5 
shows the structure of the GAP, GATT, and custom profiles (and their services) of 
Voyager when requested by central.

Figure 5. A voyager profile structure.

https://www.analog.com
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For Voyager, we define the basic GAP and GATT profiles in addition to a single 
custom profile that is used as a command server, where commands from the 
central are processed and data is returned or the configuration of the peripheral 
itself is updated.

Firmware Implementation
The BLE microcontroller is the heart of the system, ensuring that data from all the 
peripheral sensors and devices is available for retrieval or modification by the 
connected BLE central.

Device Configuration
With the BLE stack prebuilt on the MAX32666, we build our peripherals’ appear-
ance by filling out the relevant configuration functions. For example, in Figure 6, 
we provide a data length, advertising type, and a list of characters to our scan 
data discovery array, which is called in our peripheral setup function every time 
the Voyager is powered up.

 
Figure 6. Setting Voyager scanning data.

A BLE device such as this will have a huge number of settings to configure, includ-
ing transmission power from the radio and return data types. It is advisable to 
start with any prebuilt examples available with the hardware you are using and  
to make custom modifications from there. The MAX32666 offers an example code 
for a BLE data server (peripheral) called BLE DATS that was used as the basis 
for the Voyager project. After configuration, when the central scans for available 
devices, the peripheral’s name appears as Voyager. This can also be used to filter 
the search list so that the central displays only devices of the expected name. As 
seen in Figure 7, the device name is displayed alongside the device MAC address 
and the received signal strength indicator (RSSI).

 
Figure 7. A central view of Voyager.

Other configuration settings within the stack control the expected names and 
behaviors for other modes of the device such as manufacturer ID, responses to 
read/write commands, etc.
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Figure 8. The Voyager4 hardware block diagram using the MAX3207E, DS28C40A, ADXL382, 
ADG1634, MAX32666, ADXL367, MAX78000, MAX17262, MAX20335, and MAX38642.

The Command Server
As the central and peripheral sides of the Voyager4 application were designed 
in tandem, the peripheral interface can be simplified by making use of a cus-
tom profile with a single BLE service. This profile will be responsible for receiving 
commands from the central device and returning responses in the form of accel-
erometer data, temperature data, and other device information.

This single custom service is unorthodox for BLE communication in a device as 
complex as Voyager but has several benefits. It enables backward compatibility 
between Voyager versions and improves command flexibility, as using strings as 
the command input to the Voyager peripheral allows for a variety of command 
types and values based on how the data is parsed.

Once a connection is formed between peripheral and central, to establish bidi-
rectional communication the central will issue a notify command to the custom 
characteristic as seen in Figure 11. This establishes a notification system on the 
peripheral side and assigns a corresponding callback function on the central side. 
This means that any time there is updated data assigned to that custom charac-
teristic, the central device is notified, the new data is transferred, and the central 
device’s callback function is triggered.

Firmware Architecture
The hardware diagram in Figure 8 shows the array of content, included in the 
Voyager, and the relative data paths and power supplies. Most of the software 
development took place on the BLE microcontroller, as this operates as the 

https://www.analog.com/en/products/max3207e.html
https://www.analog.com/en/products/ds28c40.html
https://www.analog.com/en/products/adg1634.html
https://www.analog.com/en/products/adxl367.html
https://www.analog.com/en/products/max17262.html
https://www.analog.com/en/products/max20335.html
https://www.analog.com/en/products/max38642.html
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command center, coordinating both the BLE interface to the device and the inter-
nal pipeline of sensor and microcontroller data. To interact with the different sen-
sors and micros in our system, we must develop device drivers to be used by the 
BLE microcontroller, and the AI microcontroller as discussed in the AI section. In 
practice, the development and integration of these drivers is a large portion of the 
coding work required for a connected edge sensor.

Writing Portable Code
While developing our firmware we divided the code into several layers of abstrac-
tion, separating the specific details for one specific microcontroller from the 
application and driver code. This is a well understood problem and is often tack-
led by separating code responsibility into three distinct layers in addition to the 
application layer. These are the hardware abstraction layer (HAL), board support 
package (BSP), and the driver layer. This architecture is shown in Figure 9.

Application

BSP

HAL

Driver

 
Figure 9. A generic BSP-HAL architecture.

The HAL provides a uniform way for programs to interact with different hard-
ware without needing to know the details of each device. The BSP defines the 
hardware-dependent software, and the driver layer defines the finer details of 
individual devices such as register mapping. For example, within Voyager we  
have two microcontrollers, the MAX32666 for BLE connectivity, and the MAX78000 
with an on-board convolutional neural network (CNN) accelerator. As shown in 
Figure 10, the HAL in Voyager defines the most basic communication commands 
that will be used by either of the microcontrollers, SPI and I2C. As an example, any 
SPI call issued by any of the device drivers will initially defer responsibility to the  
SPI functions in the HAL, which then looks up the specific information for the BSP 
to use the correct SPI command for that microcontroller.

The HAL remains the same for every board in the system, but the BSP is updated 
for each microcontroller. The BSP is also responsible for defining the generic 
building blocks of the system, which decouple application calls from the specific 
device used. In Figure 10, the MAIN_ADXL block in the BSP is an abstraction from 
the underlying accelerometer used. Common commands for any accelerometer 
such as Initialize and Read are defined within the BSP layer, while low level func-
tions such as get_raw_xyz_data are defined at the driver level in the ADXL382 
block. When porting the driver code from the MAX32666 to the MAX78000 micro-
controller, the accelerometer code remains unchanged as it relates only to the 
accelerometer itself. The only files updated to allow communication with the new 
microcontroller are within the BSP layer.

This also has clear benefits in terms of replacing or upgrading parts in the sys-
tem. One real example of this within Voyager was the decision to upgrade the 
main accelerometer used. In this case, only the code within the driver layer was 
updated, simplifying maintenance, modification, and testing.
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Comms

Main_AdxlWake_ADXL

BatMon PwrMgr

Sensors

ADXL367 ADXL382MAX20335MAX17262

Drivers

 
Figure 10. The Voyager BSP HAL architecture.

Data Pipeline and BLE Central
While temperature and battery information are made available to the BLE central 
application on request, Voyager’s primary role is as a condition monitor and vibra-
tion sensor. Our requirements in terms of data throughput and how often data 
must be sent will be focused on the vibration sensor and a typical condition moni-
toring setup, for instance, one short measurement once a day. BLE does not allow 
a high data throughput. The ADXL382 is a high bandwidth, 3-axis accelerometer 
gathering 16,000 samples per axis every second in high performance mode. There 
are a few available options for sending data based on the components included 
in the system.

Sending Live Data
Without any form of buffering, send data as soon as it is available while it is 
being requested by the central. While this is useful as a demo mode, showcas-
ing the high performance accelerometer data in real time, the battery is quickly 
consumed, and data packets are dropped or corrupted as the amount of data 
generated exceeds the rate at which it can be sent.

Sending Data from Memory
Another option is to save the data to flash memory. In this way, we can safely 
record the accelerometer data without fear of overwriting previous values. The 
saved data is then sent directly to the central or reported out upon receiving a 
command from the central. As this system is no longer real time (data could be 
minutes or even days old), we can also make use of the BLE acknowledgment  
system for packets, ensuring that data arrives fully intact at the central, and 
resending any lost data.

This solution is much more practical for a typical industrial condition monitoring 
setting, but the device’s battery life is mostly wasted sending vibration informa-
tion that does not change much day to day.

https://www.analog.com
https://www.analog.com/en/products/max78000.html
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Performing Analysis at the Edge
To save on battery life, it is better to perform some analysis at the edge to ensure 
that only relevant data is communicated over the radio link. Of course, this is 
only possible if the power required to create meaningful insights at the edge  
is significantly less than that required to send the data over BLE (see Part 1 of this 
article series for further information on this).

In Figure 8, you can see that the accelerometer has a direct data path to both 
microcontrollers. In the use case where we will perform some analysis at the 
edge, the AI microcontroller can directly read vibration data from the accelerom-
eter and perform an analysis with an onboard AI model.

Peripheral

Send

Central

Start Notify

Parse Data

Handle_rx

Issue
Command

Notification
(Sender, Data)

!
Notify: Callback 

Device Info

Battery

Temperature

Custom
Service

Command
Interpreter

Data

x,y,z Data

Accelerometer

Write: Command

 
Figure 11. The Voyager central peripheral architecture.

Designing the Central User Interface
As the BLE peripheral was designed in tandem with the Voyager peripheral, there 
was a lot of flexibility in how the two interacted. In general, the central device 
needed to scan for and connect to a Voyager peripheral, and then send string 
commands and process their return values. After the initial connection, all BLE 
commands are sent directly to the peripheral’s custom service for parsing. The 
central in this case is a graphical user interface (GUI) on a Windows PC, written 
in Python, and making use of a BLE peripheral library (BLEak) to issue standard 
BLE commands. BLEak was built on top of the standard asyncio library for Python, 
allowing BLE commands to run asynchronously, ensuring the user interface 
remains interactable and does not freeze.

When the GUI successfully connects to a peripheral, a notify command is issued 
automatically to the single custom characteristic of the Voyager as displayed in 
Figure 11. This ensures that any updates to this characteristic are reported to 
central. This is important, as further commands receive an acknowledgment or 
response from the Voyager that indicates if they were successfully carried out.

How Is Data Requested?
Data is always requested using simple string commands. For example, central 
may issue a setphy 2 command to instruct the Voyager to use its 2M radio, which 
enables faster data communication at the cost of some range and reliability. The 
peripheral device parses this command to ensure it is valid, before calling its own 
internal setphy function with an input value of 2 to switch the radio used. If this 
function is carried out successfully by Voyager, a Return: OK command is issued 
back to the central device and displayed to the user.

Interpreting Accelerometer Data
Before receiving data, the user of the GUI may optionally configure the accelerom-
eter of the connected Voyager using the setadxlcfg command. Once the peripheral 
issues a start command, the flow of accelerometer data from peripheral to central 
begins. By default, central and peripheral devices operate in live data mode as 
this is useful for demo purposes.

On the peripheral side, the internal first-in-first-out (FIFO) buffer is filled with 
the latest data at the user specified sampling rate. Once the FIFO is filled, a flag 
is placed on the Voyager custom service, notifying the peripheral that new data  
is available. Data is then sent to and parsed by the peripheral, into formatted 
arrays of acceleration data in three axes: x, y, and z. Data is always plotted, and 
the user may optionally select a Save data option that also saves the same data 
to a csv file for later analysis.

 
Figure 12. The Voyager4 central GUI plotting data.

AI Algorithm Design
The goal of this project is to detect when a motor’s health begins to degrade. AI 
analysis at the edge seeks to replace or supplement human analysis of the data, 
by creating metrics or characterizations of motor health, based on one or more 
inputs including audio, temperature, and vibration. Vibration is by far the most 
utilized in condition monitoring applications today.

Inputs
Many edge AI processors tend to be quite power hungry, which runs counter to one 
of the goals of any wireless condition monitoring solution: long device lifetime. 
The MAX78000 (as stated earlier) can make fast, low power AI inferences that use 
less power overall than making use of the BLE radio. However, in using a low power 
edge AI processor, keep in mind that the size of our neural network cannot exceed 
the specifications of the board. The board features a CNN accelerator with 512 kB 
of data memory. It is primarily intended for object detection, audio processing, 
and time series data processing.

The available data for our solution is acceleration over time. To maximize the 
performance of the trained algorithm, several preprocessing approaches were 
trialled to determine which had the greatest effect on accuracy. This is discussed 
in greater detail in Part 3 of this article series.
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Training
The process for training and deploying a neural network to the MAX78000 is well 
described online through the “Analog Devices AI” GitHub. In general, a model is first 
created on a host PC using conventional toolsets like PyTorch® and TensorFlow®. 
This model requires training data that must be saved by the targeted device 
and transferred to the PC. One subsection of the input becomes the training set 
and is specifically used for training the model. A further subsection becomes a 
validation set, which is used to observe how the loss function (a measure of the  
performance of the network) changes during training.

Depending on the type of model used, different types and amounts of data may 
be required. If you are looking to characterize specific motor faults, the model 
you are training will require labeled data outlining the vibrations present when 
the different faults are present in addition to healthy vibration data where no 
fault is present.

Healthy Time Series

Preprocessing

Healthy Model
Training Set

Healthy Test (10%)Validation (10%) Training (80%)

Required to Train + Test Model

Figure 13. Voyager healthy training data.

Voyager was initially developed with an autoencoder type neural network. 
Autoencoders do not need the data to have any labels to learn how to classify 
it. While this type of model is not suited to complex fault classification, it can be 
quickly trained and uses only data that the customer already has on hand like 
healthy motor data.

Finding the ideal amount of data to train on is unique to every case, with sufficient 
data required to learn the general trends of healthy motor data without overfitting 
the data to the training input. The default example deployed with Voyager was 
trained with just 30 seconds of healthy accelerometer data. The same amount 

of data with an imbalance fault present was saved for verification. Both datasets 
were saved directly to the training PC using the Python GUI.

Faulty
Time Series

Preprocessing

Faulty Test Set

Faulty Test

Required to Test Model

 
Figure 14. Voyager faulty testing data.

Before being used to train the model, the input data was pre-processed. The train-
ing script then runs through several iterations of the training sequentially and 
chooses the best performing model. Some faulty input data is required for testing 
purposes. You cannot train a model on healthy data and express confidence in 
your results without first testing on example faulty data.

How Is the Algorithm Deployed?
Once the model is trained, it must be quantized and synthesized using ADI’s online 
toolset. Quantization adjusts the weights of the generated model to a smaller set 
of bins by rounding or truncation, allowing for a reduction in the memory required 
to store the model. This is a standard procedure when deploying neural networks 
to smaller edge devices. Synthesis converts the quantized model into c files that 
can be understood by the microcontroller.

Three files are generated, which must then be copied into the active project for 
the microcontroller and loaded with the next firmware update. Two of the files 
(cnn.h and cnn.c) contain register writes for CNN configuration and other use-
ful functions for the model that is loaded. The third file (weights.h) contains the 
trained (and quantized) model weights.

Once the new firmware is loaded, either via a wired update over the debug port, or 
wirelessly with an over-the-air (OTA) update, the model has been deployed and can 
be queried by the BLE microcontroller to make AI inferences on demand.

How Is It Used Once It Is Deployed?
Once the new firmware is deployed, the AI microcontroller operates as a finite 
state machine, accepting and reacting to commands from the BLE controller  
over SPI.

https://www.analog.com
https://github.com/MaximIntegratedAI
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Figure 15. Microcontroller SPI communication.

When an inference is requested, the AI microcontroller wakes and requests 
data from the accelerometer. Importantly, it then performs the same prepro-
cessing steps to the time series data as used in the training. Finally, the output 
of this preprocessing is fed to the deployed neural network, which can report  
a classification.
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Figure 16. AI inference state machine.

As a battery saving measure, the AI microcontroller is designed to automatically 
issue an inference upon wakeup, which allows the BLE microcontroller to power it 
up only when an analysis is required.

In a typical setup, the BLE microcontroller can wake from a low power sleep mode 
for a short period every day, request an AI inference of the accelerometer data 
present, and return to its sleep mode if the data does not pass a user-set criteria 

such as the model states that the data looks healthy with 99% certainty. In the 
opposite case, where data looks anomalous or cannot be confidently identified as 
healthy, the BLE microcontroller can connect to a nearby BLE host and share the 
data. In this way, the analysis at the edge removes the burden of understanding 
the data from the host system and saves battery life as a result.

Conclusion
In this article, we introduced Voyager4, a wireless vibration monitoring system 
that employs edge AI analysis to improve its intelligence and lifetime as a condi-
tion monitoring tool. Designing an effective condition monitoring sensor requires 
several considerations. We discussed the hardware signal chain for Voyager4, and 
the firmware that was used to integrate different system elements together in 
addition to the external appearance of the device as a BLE peripheral. We also 
explored the use of AI in Voyager, giving some insights into how to consider devel-
oping and deploying your edge AI models.

Read on to Part 3 of this series to learn more about the specific implementation 
of the AI algorithm on board Voyager including the classification of several com-
mon motor faults.
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