

RELIABILITY REPORT FOR MAX970EEE+

PLASTIC ENCAPSULATED DEVICES

April 16, 2009

MAXIM INTEGRATED PRODUCTS

120 SAN GABRIEL DR. SUNNYVALE, CA 94086

Approved by
Ken Wendel
Quality Assurance
Director, Reliability Engineering

Conclusion

The MAX970EEE+ successfully meets the quality and reliability standards required of all Maxim products. In addition, Maxim's continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim's quality and reliability standards.

Table of Contents

- V.Quality Assurance Information
- II.Manufacturing Information

I.Device Description

- III.Packaging Information
-Attachments

VI.Reliability Evaluation

- I. Device Description
 - A. General

The MAX965 - MAX970 single/dual/quad micropower comparators feature rail-to-rail inputs and outputs, and fully specified single-supply operation down to +1.6V. These devices draw less than 5µA per comparator and have open-drain outputs that can be pulled beyond VCC to 6V (max) above ground. In addition, their rail-to-rail input common-mode voltage range makes these comparators suitable for ultra-low-voltage operation. A +1.6V to +5.5V single-supply operating voltage range makes the MAX965 family of comparators ideal for 2-cell battery-powered applications. The MAX965/MAX967/MAX968/MAX969 offer programmable hysteresis and an internal 1.235V ±1.5% reference. All devices are available in either space-saving 8-pin µMAX® or 16-pin QSOP packages.

II. Manufacturing Information

A. Description/Function:	Single/Dual/Quad, Micropower, Ultra-Low-Voltage, Rail-to-Rail I/O Comparators
B. Process:	B12
C. Fabrication Location:	Oregon

NSEB, ATP, Unisem

April 26, 1997

- D. Assembly Location:
- E. Date of Initial Production:

III. Packaging Information

A. Package Type:	16-pin QSOP
B. Lead Frame:	Copper
C. Lead Finish:	Matte Sn Plate
D. Die Attach:	Conductive Epoxy
E. Bondwire:	Gold (1 mil dia.)
F. Mold Material:	Epoxy with silica filler
G. Assembly Diagram:	#05-1501-0120
H. Flammability Rating:	Class UL94-V0
I. Classification of Moisture Sensitivity per JEDEC standard J-STD-020-C	Level 1
J. Single Layer Theta Ja:	120°C/W
K. Single Layer Theta Jc:	37°C/W
I Multi Laver Theta Ia:	103 7°C/M

L. Multi Layer Theta Ja:103.7°C/WM. Multi Layer Theta Jc:37°C/W

IV. Die Information

A. Dimensions:	53 X 89 mils
B. Passivation:	Si_3N_4/SiO_2 (Silicon nitride/ Silicon dioxide
C. Interconnect:	Aluminum/Si (Si = 1%)
D. Backside Metallization:	None
E. Minimum Metal Width:	1.2 microns (as drawn)
F. Minimum Metal Spacing:	1.2 microns (as drawn)
G. Bondpad Dimensions:	5 mil. Sq.
H. Isolation Dielectric:	SiO ₂
I. Die Separation Method:	Wafer Saw

V. Quality Assurance Information

A. Quality Assurance Contacts:	Ken Wendel (Director, Reliability Engineering) Bryan Preeshl (Managing Director of QA)
B. Outgoing Inspection Level:	0.1% for all electrical parameters guaranteed by the Datasheet.0.1% For all Visual Defects.
C. Observed Outgoing Defect Rate:	< 50 ppm
D. Sampling Plan:	Mil-Std-105D

VI. Reliability Evaluation

A. Accelerated Life Test

The results of the 135°C biased (static) life test are shown in Table 1. Using these results, the Failure Rate (λ) is calculated as follows:

 $\lambda = \frac{1}{\text{MTF}} = \frac{1.83}{192 \times 4340 \times 320 \times 2}$ (Chi square value for MTTF upper limit) $\lambda = 3.4 \times 10^{-9}$

𝔅 = 3.4 F.I.T. (60% confidence level @ 25°C)

The following failure rate represents data collected from Maxim's reliability monitor program. Maxim performs quarterly 1000 hour life test monitors on its processes. This data is published in the Product Reliability Report found at http://www.maxim-ic.com/. Current monitor data for the B12 HV Process results in a FIT Rate of 2.7 @ 25C and 17.3 @ 55C (0.8 eV, 60% UCL)

B. Moisture Resistance Tests

The industry standard 85°C/85%RH or HAST testing is monitored per device process once a quarter.

C. E.S.D. and Latch-Up Testing

The CM33-1 die type has been found to have all pins able to withstand a HBM transient pulse of +/-2000 V per JEDEC JESD22-A114. Latch-Up testing has shown that this device withstands a current of +/-250 mA.

Table 1 Reliability Evaluation Test Results

MAX970EEE+

TEST ITEM	TEST CONDITION	FAILURE IDENTIFICATION	SAMPLE SIZE	NUMBER OF FAILURES	
Static Life Test	(Note 1)				
	Ta = 135°C	DC Parameters	320	0	
	Biased	& functionality			
	Time = 192 hrs.				
Moisture Testing	(Note 2)				
85/85	Ta = 85°C	DC Parameters	77	0	
	RH = 85%	& functionality			
	Biased				
	Time = 1000hrs.				
Mechanical Stres	ss (Note 2)				
Temperature	-65°C/150°C	DC Parameters	77	0	
Cycle	1000 Cycles	& functionality			
•	Method 1010	-			

Note 1: Life Test Data may represent plastic DIP qualification lots.

Note 2: Generic Package/Process data