MAX8715EUA Rev. A

RELIABILITY REPORT

FOR

MAX8715EUA

PLASTIC ENCAPSULATED DEVICES

June 8, 2007

MAXIM INTEGRATED PRODUCTS

120 SAN GABRIEL DR.

SUNNYVALE, CA 94086

Written by

YS Park Quality Assurance Field Quality Manager Approved by

Jim Pedicord Quality Assurance Manager, Reliability Operations

Conclusion

The MAX8715 successfully meets the quality and reliability standards required of all Maxim products. In addition, Maxim's continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim's quality and reliability standards.

Table of Contents

I.Device Description II.Manufacturing Information III.Packaging InformationAttachments V.Quality Assurance Information VI.Reliability Evaluation IV.Die Information

I. Device Description

A. General

The MAX8715 boost converters incorporate high-performance (at 1.2MHz), current-mode, fixed-frequency, pulsewidth modulation (PWM) circuitry with a built-in $0.21\Omega/0.15\Omega$ n-channel MOSFET to provide a highly efficient regulator with fast response.

High switching frequency (640kHz or 1.2MHz selectable) allows easy filtering and faster loop performance. An external compensation pin provides the user flexibility in determining loop dynamics, allowing the use of small, low equivalent-series-resistance (ESR) ceramic output capacitors. The device can produce an output voltage as high as 12V from an input as low as 2.6V.

Soft-start is programmed with an external capacitor, which sets the input-current ramp rate. In shutdown mode, current consumption is reduced to 0.1µA. The MAX8715 are available in a space-saving 8-pin µMAX®package. The ultra-small package and high switching frequency allow the total solution to be less than 1.1mm high.

B. Absolute Maximum Ratings Item	Rating
LX to GND	-0.3V to +14V
IN, SHDN, FREQ, FB to GND	-0.3V to +6.2V
SS, COMP to GND	-0.3V to (VIN + 0.3V)
RMS LX Pin Current	1.2A
Continuous Power Dissipation (TA = +70°C)	
8-Pin µMAX (derate 4.1mW/°C above +70°C)	330mW
Operating Temperature Range	
MAX8715EUA	-40°C to +85°C
Junction Temperature	+150°C
Storage Temperature Range	-65°C to +150°C
Lead Temperature (soldering, 10s)	+300°C
· · · · · · · · · · · · · · · · · · ·	

II. Manufacturing Information

A. Description/Function:	Low-Noise Step-Up DC-DC Converters
B. Process:	B8 (Standard 0.8 micron silicon gate CMOS)
C. Number of Device Transistors:	1,012
D. Fabrication Location:	Dallas, USA
E. Assembly Location:	Thailand, Malaysia
F. Date of Initial Production:	August, 2004

III. Packaging Information

A. Package Type:	8-Pin uMAX	
B. Lead Frame:	Copper	
C. Lead Finish:	Solder Plate or 100% Matte Tin	
D. Die Attach:	Silver-filled Epoxy	
E. Bondwire:	Gold (1.3 mil dia.)	
F. Mold Material:	Epoxy with silica filler	
G. Assembly Diagram:	# 05-9000-1160	
H. Flammability Rating:	Class UL94-V0	
I. Classification of Moisture Sensitivity per JEDEC standard J-STD-020-C: Level 1		

IV. Die Information

Α.	Dimensions:	68 x 94 mils
В.	Passivation:	Si_3N_4/SiO_2 (Silicon nitride/ Silicon dioxide)
C.	Interconnect:	Aluminum/Si (Si = 1%)
D.	Backside Metallization:	None
E.	Minimum Metal Width:	0.8 microns (as drawn)
F.	Minimum Metal Spacing:	0.8 microns (as drawn)
G.	Bondpad Dimensions:	3.80 mil. Sq. (minimum)
H.	Isolation Dielectric:	SiO ₂
I.	Die Separation Method:	Wafer Saw

V. Quality Assurance Information

Α.	Quality Assurance Contacts:	Jim Pedicord (Manager, Reliability Operations)
	-	Bryan Preeshl (Managing Director of QA)

- B. Outgoing Inspection Level:
 0.1% for all electrical parameters guaranteed by the Datasheet.
 0.1% For all Visual Defects.
- C. Observed Outgoing Defect Rate: < 50 ppm
- D. Sampling Plan: Mil-Std-105D

VI. Reliability Evaluation

A. Accelerated Life Test

The results of the 135°C biased (static) life test are shown in **Table 1**. Using these results, the Failure Rate (λ) is calculated as follows:

 $\lambda = \frac{1}{\text{MTTF}} = \frac{1.83}{192 \times 4340 \times 48 \times 2}$

(Chi square value for MTTF upper limit)

Temperature Acceleration factor assuming an activation energy of 0.8eV

 $\lambda = 22.91 \times 10^{-9}$

 λ = 22.91 F.I.T. (60% confidence level @ 25°C)

This low failure rate represents data collected from Maxim's reliability monitor program. In addition to routine production Burn-In, Maxim pulls a sample from every fabrication process three times per week and subjects it to an extended Burn-In prior to shipment to ensure its reliability. The reliability control level for each lot to be shipped as standard product is 59 F.I.T. at a 60% confidence level, which equates to 3 failures in an 80 piece sample. Attached Burn-In Schematic (Spec. # 06-6357) shows the static Burn-In circuit. Maxim performs failure analysis on any lot that exceeds this reliability control level. Maxim also performs quarterly 1000 hour life test monitors. This data is published in the Product Reliability Report (**RR-1N**). Current monitor data for the B8/S8 Process results in a FIT rate of $0.09 \oplus 25^{\circ}$ C and $1.48 \oplus 55^{\circ}$ C (eV = 0.8, UCL = 60%).

B. Moisture Resistance Tests

Maxim pulls pressure pot samples from every assembly process three times per week. Each lot sample must meet an LTPD = 20 or less before shipment as standard product. Additionally, the industry standard 85°C/85%RH testing is done per generic device/package family once a quarter.

C. E.S.D. and Latch-Up Testing

The PD54Z die type has been found to have all pins able to withstand a transient pulse of \pm 800V, per Mil-Std-883 Method 3015 (reference attached ESD Test Circuit). Latch-Up testing has shown that this device withstands a current of \pm 250mA.

Table 1 Reliability Evaluation Test Results

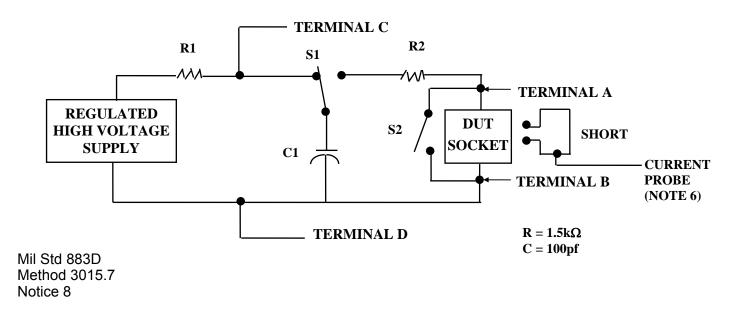
MAX8715EUA

TEST ITEM	TEST CONDITION	FAILURE IDENTIFICATION	PACKAGE	SAMPLE SIZE	NUMBER OF FAILURES
Static Life Test ((Note 1)				
	Ta = 135°C Biased Time = 192 hrs.	DC Parameters & functionality		48	0
Moisture Testing	g (Note 2)				
Pressure Pot	Ta = 121°C P = 15 psi. RH= 100% Time = 168hrs.	DC Parameters & functionality	TDFN	77	0
85/85	Ta = 85°C RH = 85% Biased Time = 1000hrs.	DC Parameters & functionality		77	0
Mechanical Stress (Note 2)					
Temperature Cycle	-65°C/150°C 1000 Cycles Method 1010	DC Parameters & functionality		77	0

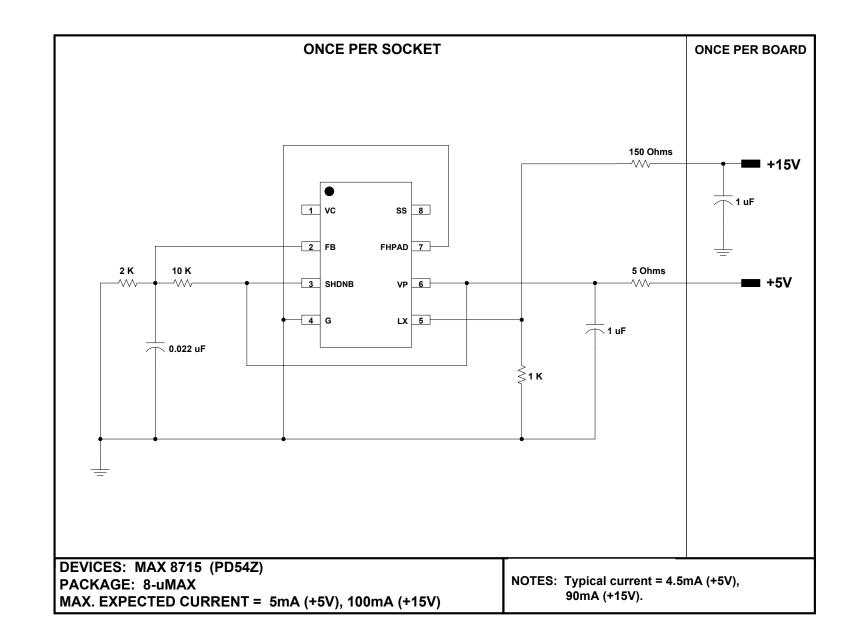
Note 1:Life Test Data may represent plastic DIP qualification lots.Note 2:Generic Package/Process data

Attachment #1

	Terminal A (Each pin individually connected to terminal A with the other floating)	Terminal B (The common combination of all like-named pins connected to terminal B)		
1.	All pins except V _{PS1} <u>3/</u>	All V _{PS1} pins		
2.	All input and output pins	All other input-output pins		


TABLE II. Pin combination to be tested. 1/2/

- Table II is restated in narrative form in 3.4 below.
- No connects are not to be tested.
- <u>1/</u> <u>2/</u> <u>3/</u> Repeat pin combination I for each named Power supply and for ground


(e.g., where V_{PS1} is V_{DD} , V_{CC} , V_{SS} , V_{BB} , GND, $+V_S$, $-V_S$, V_{REF} , etc).

3.4 Pin combinations to be tested.

- a. Each pin individually connected to terminal A with respect to the device ground pin(s) connected to terminal B. All pins except the one being tested and the ground pin(s) shall be open.
- b. Each pin individually connected to terminal A with respect to each different set of a combination of all named power supply pins (e.g., V_{SS1}, or V_{SS2} or V_{SS3} or V_{CC1}, or V_{CC2}) connected to terminal B. All pins except the one being tested and the power supply pin or set of pins shall be open.
- c. Each input and each output individually connected to terminal A with respect to a combination of all the other input and output pins connected to terminal B. All pins except the input or output pin being tested and the combination of all the other input and output pins shall be open.

PKG, CODE: U8-1 CAV./PAD SIZE: 68×94	SIGNATURES PKG. DESIGN	DATE	CONFIDENTIAL & PROPRIE BOND DIAGRAM #: 05-9000-1160	REV: A

	DOCUMENT I.D. 06-6357	REVISION A	MAXIM TITLE: BI Circuit: MAX8715 (PD54Z)		PAGE	2
--	------------------------------	------------	--	--	------	---