

RELIABILITY REPORT FOR MAX6450UT29L+

PLASTIC ENCAPSULATED DEVICES

August 3, 2009

MAXIM INTEGRATED PRODUCTS

120 SAN GABRIEL DR. SUNNYVALE, CA 94086

Approved by	
Ken Wendel	
Quality Assurance	
Director, Reliability Engineering	

Conclusion

The MAX6450UT29L+ successfully meets the quality and reliability standards required of all Maxim products. In addition, Maxim"s continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim"s quality and reliability standards.

Table of Contents

IDevice Description	VQuality Assurance Information
IIManufacturing Information	VIReliability Evaluation
IIIPackaging Information	IVDie Information
Attachments	

I. Device Description

A. General

The MAX6443-MAX6452 low-current microprocessor reset circuits feature single or dual manual reset inputs with an extended 6.72s setup period. Because of the extended setup period, short switch closures (nuisance resets) are ignored. On all devices, the reset output asserts when any of the monitored supply voltages drops below its specified threshold. The reset output remains asserted for the reset timeout period (210ms typ) after all monitored supplies exceed their reset thresholds. The reset output is one-shot pulse asserted for the reset timeout period (140ms min) when selected manual reset input(s) are held low for an extended setup timeout period of 6.72s. These devices ignore manual reset transitions of less than 6.72s (typ). The MAX6443-MAX6448 are single fixed-voltage µP supervisors. The MAX6443/MAX6444 have a single extended manual reset input. The MAX6445/MAX6446 have two extended manual reset inputs. The MAX6447/MAX6448 have one extended and one immediate manual reset input. The MAX6449-MAX6452 have one fixed-threshold µP supervisor and one adjustable-threshold µP supervisor. The MAX6449/MAX6450 have two delayed manual reset inputs. The MAX6451/MAX6452 have one delayed and one immediate manual reset input. The MAX6443-MAX6452 have an active-low RESET with push-pull or open-drain output logic options. These devices, offered in small SOT packages, are fully guaranteed over the extended temperature range (-40°C to +85°C).

II. Manufacturing Information

A. Description/Function: µP Reset Circuits with Long Manual Reset Setup Period

B. Process: B8

C. Number of Device Transistors:

D. Fabrication Location: California or Texas

E. Assembly Location: Malaysia, Philippines, Thailand

F. Date of Initial Production: July 27, 2002

III. Packaging Information

A. Package Type: 6-pin SOT23
B. Lead Frame: Copper

C. Lead Finish:

D. Die Attach:
Conductive Epoxy
E. Bondwire:
Gold (1 mil dia.)
F. Mold Material:
G. Assembly Diagram:
H. Flammability Rating:

100% matte Tin
Conductive Epoxy
Epoxy
Hotalian
Epoxy with silica filler
#05-1601-0198
Class UL94-V0

Classification of Moisture Sensitivity per

JEDEC standard J-STD-020-C

J. Single Layer Theta Jb: 115*°C/WK. Single Layer Theta Jc: 80°C/W

IV. Die Information

A. Dimensions: 31 X 44 mils

B. Passivation: Si₃N₄/SiO₂ (Silicon nitride/ Silicon dioxide)

Level 1

C. Interconnect: AI/0.5%Cu with Ti/TiN Barrier

D. Backside Metallization: None

E. Minimum Metal Width: 0.8 microns (as drawn)F. Minimum Metal Spacing: 0.8 microns (as drawn)

G. Bondpad Dimensions: 5 mil. Sq.
 H. Isolation Dielectric: SiO₂
 I. Die Separation Method: Wafer Saw

V. Quality Assurance Information

A. Quality Assurance Contacts: Ken Wendel (Director, Reliability Engineering)

Bryan Preeshl (Managing Director of QA)

B. Outgoing Inspection Level: 0.1% for all electrical parameters guaranteed by the Datasheet.

0.1% For all Visual Defects.

C. Observed Outgoing Defect Rate: < 50 ppmD. Sampling Plan: Mil-Std-105D

VI. Reliability Evaluation

A. Accelerated Life Test

The results of the 135°C biased (static) life test are pending. Using these results, the Failure Rate (3) is calculated as follows:

$$\lambda = \underbrace{\frac{1}{\text{MTTF}}}_{\text{equation}} = \underbrace{\frac{1.83}{192 \times 4340 \times 141 \times 2}}_{\text{(where 4340 = Temperature Acceleration factor assuming an activation energy of 0.8eV)}}_{\text{$\lambda = 7.6 \times 10^{-9}$}}$$

$$\lambda = 7.6 \text{ F.I.T. (60\% confidence level @ 25°C)}$$

The following failure rate represents data collected from Maxim's reliability monitor program. Maxim performs quarterly 1000 hour life test monitors on its processes. This data is published in the Product Reliability Report found at http://www.maxim-ic.com/. Current monitor data for the B8 Process results in a FIT Rate of 1.86 @ 25C and 22.5 @ 55C (0.8 eV, 60% UCL)

B. Moisture Resistance Tests

The industry standard 85°C/85%RH or HAST testing is monitored per device process once a quarter.

C. E.S.D. and Latch-Up Testing

The MS76-1 die type has been found to have all pins able to withstand a HBM transient pulse of +/-600 V per Mil-Std 883 Method 3015.7. Latch-Up testing has shown that this device withstands a current of +/-250 mA.

Table 1

Reliability Evaluation Test Results

MAX6450UT29L+

TEST ITEM	TEST CONDITION	FAILURE IDENTIFICATION	SAMPLE SIZE	NUMBER OF FAILURES	
Static Life Test ((Note 1)				
	Ta = 135°C Biased	DC Parameters & functionality	141	0	
	Time = 192 hrs.	a failotionality			
Moisture Testing	(Note 2)				
85/85	$Ta = 85^{\circ}C$	DC Parameters	77	0	
	RH = 85%	& functionality			
	Biased				
	Time = 1000hrs.				
Mechanical Stres	ss (Note 2)				
Temperature	-65°C/150°C	DC Parameters	77	0	
Cycle	1000 Cycles	& functionality			
	Method 1010				

Note 1: Life Test Data may represent plastic DIP qualification lots.

Note 2: Generic Package/Process data