RELIABILITY REPORT

FOR

MAX6008xExx

PLASTIC ENCAPSULATED DEVICES

May 16, 2002

MAXIM INTEGRATED PRODUCTS

120 SAN GABRIEL DR.

SUNNYVALE, CA 94086

Written by

Jim Pedicord Quality Assurance Reliability Lab Manager Reviewed by

Bryan J. Preeshl Quality Assurance Executive Director

Conclusion

The MAX6008 successfully meets the quality and reliability standards required of all Maxim products. In addition, Maxim's continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim's quality and reliability standards.

Table of Contents

I.Device Description

II.Manufacturing Information

III.Packaging Information

IV.Die Information

.....Attachments

I. Device Description

A. General

The MAX6008 ultra-low-power shunt reference is ideal for space-critical and low-power applications. It is offered in a 3-pin SOT23 package, and the minimum operating current is guaranteed to be <1 μ A. This device features low temperature coefficients of <30ppm/°C and initial accuracy of better than 0.2%. Available in +1.25V, +2.048V, +2.5V, and 3V output voltages, the MAX6008 has references of +1.25V, +2.048V, +2.5V, and +3.0V, respectively. The device can be used as lower-power, higher-precision upgrades to the ICL8069, LM385, LT1004, and LM4040 references. The MAX6008 is available in two grades: A and B. The A grade features a temperature coefficient of 30ppm/°C over the extended temperature range of -40°C to +85°C, with an initial accuracy of 0.2%. Grade B features a temperature coefficient of 75ppm/°C with an initial accuracy of 0.5%. The MAX6008 in +2.5V is offered in 8-pin SOIC packages, as plug in upgrades for LT1004 and LM285.

B. Absolute Maximum Ratings

<u>ltem</u>	<u>Rating</u>
Operating Current (OUT to GND)	20mA
Forward Current (GND to OUT)	20mA
Continuous Power Dissipation (TA = +70°C)	
3-Pin SOT23	320mW
8-Pin SO	471mW
Derates above +70°C)	
3-Pin SOT23	4mW/°C
8-Pin SO	5.48mW/°C
Operating Temperature Range	-40°C to +85°C
Storage Temperature Range	-65°C to +150°C
Lead Temperature (soldering, 10s)	+300°C

II. Manufacturing Information

A. Description/Function: 1µA SOT23 Precision Shunt Voltage Reference

B. Process: S12 (Standard 1.2 micron silicon gate CMOS)

C. Number of Device Transistors: 60

D. Fabrication Location: California or Oregon, USA

E. Assembly Location: Malaysia

F. Date of Initial Production: July, 2000

III. Packaging Information

A. Package Type:	3-Pin SOT23	8-Pin SO
B. Lead Frame:	Alloy 42	Copper
C. Lead Finish:	Solder Plate	Solder Plate
D. Die Attach:	Silver-filled Epoxy	Silver-filled Epoxy
E. Bondwire:	Gold (1 mil dia.)	Gold (1 mil dia.)
F. Mold Material:	Epoxy with silica filler	Epoxy with silica filler
G. Assembly Diagram:	# 05-0901-0161	05-0901-0160
H. Flammability Rating:	Class UL94-V0	Class UL94-V0
I. Classification of Moisture Sensitivity		

Level 1

Level 1

IV. Die Information

A. Dimensions: 44 x 31 mils

B. Passivation: Si_3N_4/SiO_2 (Silicon nitride/ Silicon dioxide)

C. Interconnect: Aluminum/Si (Si = 1%)

D. Backside Metallization: None

per JEDEC sandard JESD22-112:

E. Minimum Metal Width: 1.2 microns (as drawn)

F. Minimum Metal Spacing: 1.2 microns (as drawn)

G. Bondpad Dimensions: 5 mil. Sq.

H. Isolation Dielectric: SiO₂

I. Die Separation Method: Wafer Saw

V. Quality Assurance Information

A. Quality Assurance Contacts: Jim Pedicord (Reliability Lab Manager)

Bryan Preeshl (Executive Director) Kenneth Huening (Vice President)

B. Outgoing Inspection Level: 0.1% for all electrical parameters guaranteed by the Datasheet.

0.1% For all Visual Defects.

C. Observed Outgoing Defect Rate: < 50 ppm

D. Sampling Plan: Mil-Std-105D

VI. Reliability Evaluation

A. Accelerated Life Test

The results of the 135°C biased (static) life test are shown in **Table 1**. Using these results, the Failure Rate (λ) is calculated as follows:

$$\lambda = \underbrace{\frac{1}{\text{MTTF}}}_{\text{F}} = \underbrace{\frac{1.83}{192 \times 4389 \times 157 \times 2}}_{\text{Chi square value for MTTF upper limit)}}_{\text{Temperature Acceleration factor assuming an activation energy of } 0.8eV$$

$$\lambda = 6.92 \times 10^{-9}$$

 λ = 6.92 F.I.T. (60% confidence level @ 25°C)

This low failure rate represents data collected from Maxim's reliability monitor program. h addition to routine production Burn-In, Maxim pulls a sample from every fabrication process three times per week and subjects it to an extended Burn-In prior to shipment to ensure its reliability. The reliability control level for each lot to be shipped as standard product is 59 F.I.T. at a 60% confidence level, which equates to 3 failures in an 80 piece sample. Maxim performs failure analysis on any lot that exceeds this reliability control level. Attached Burn-In Schematic (Spec. # 06-5502) shows the static Burn-In circuit. Maxim also performs quarterly 1000 hour life test monitors. This data is published in the Product Reliability Report (RR-1M).

B. Moisture Resistance Tests

Maxim pulls pressure pot samples from every assembly process three times per week. Each lot sample must meet an LTPD = 20 or less before shipment as standard product. Additionally, the industry standard 85°C/85%RH testing is done per generic device/package family once a quarter.

C. E.S.D. and Latch-Up Testing

The RF28-2 die type has been found to have all pins able to withstand a transient pulse of ± 1500 V, per Mil-Std-883 Method 3015 (reference attached ESD Test Circuit). Latch-Up testing has shown that this device withstands a current of ± 250 mA and/or ± 20 V.

Table 1 Reliability Evaluation Test Results

MAX6008xExx

TEST ITEM	TEST CONDITION	FAILURE IDENTIFICATION	PACKAGE	SAMPLE SIZE	NUMBER OF FAILURES
Static Life Test	t (Note 1)				
	Ta = 135°C Biased Time = 192 hrs.	DC Parameters & functionality		157	0
Moisture Testi	ng (Note 2)				
Pressure Pot	Ta = 121°C P = 15 psi. RH= 100% Time = 168hrs.	DC Parameters & functionality	SOT23 SO	77 77	0
85/85	Ta = 85°C RH = 85% Biased Time = 1000hrs.	DC Parameters & functionality		77	0
Mechanical Str	ress (Note 2)				
Temperature Cycle	-65°C/150°C 1000 Cycles Method 1010	DC Parameters		77	0

Note 1: Life Test Data may represent plastic DIP qualification lots. Note 2: Generic Package/Process data

Attachment #1

TABLE II. Pin combination to be tested. 1/2/


	Terminal A (Each pin individually connected to terminal A with the other floating)	Terminal B (The common combination of all like-named pins connected to terminal B)
1.	All pins except V _{PS1} 3/	All V _{PS1} pins
2.	All input and output pins	All other input-output pins

- 1/ Table II is restated in narrative form in 3.4 below.
- 2/ No connects are not to be tested.
- $\overline{3/}$ Repeat pin combination I for each named Power supply and for ground

(e.g., where V_{PS1} is V_{DD} , V_{CC} , V_{SS} , V_{BB} , GND, $+V_{S}$, $-V_{S}$, V_{REF} , etc).

3.4 Pin combinations to be tested.

- a. Each pin individually connected to terminal A with respect to the device ground pin(s) connected to terminal B. All pins except the one being tested and the ground pin(s) shall be open.
- b. Each pin individually connected to terminal A with respect to each different set of a combination of all named power supply pins (e.g., \(\mathbb{L}_{S1} \), or \(\mathbb{L}_{S2} \) or \(\mathbb{L}_{S3} \) or \(\mathbb{L}_{C1} \), or \(\mathbb{L}_{C2} \)) connected to terminal B. All pins except the one being tested and the power supply pin or set of pins shall be open.
- c. Each input and each output individually connected to terminal A with respect to a combination of all the other input and output pins connected to terminal B. All pins except the input or output pin being tested and the combination of all the other input and output pins shall be open.

Mil Std 883D Method 3015.7 Notice 8