

RELIABILITY REPORT FOR MAX3744ESA+ PLASTIC ENCAPSULATED DEVICES

January 26, 2010

MAXIM INTEGRATED PRODUCTS

120 SAN GABRIEL DR. SUNNYVALE, CA 94086

Approved by
Ken Wendel
Quality Assurance
Director, Reliability Engineering

Conclusion

The MAX3744ESA+ successfully meets the quality and reliability standards required of all Maxim products. In addition, Maxim's continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim's quality and reliability standards.

Table of Contents

IDevice Description	VQuality Assurance Information
IIManufacturing Information	VIReliability Evaluation
IIIPackaging Information	IVDie Information
Attachments	

I. Device Description

A. General

The MAX3744/MAX3745 transimpedance amplifiers provide a compact, low-power solution for communication up to 2.7Gbps. They feature 330nA input-referred noise at 2.1GHz bandwidth (BW) with 0.85pF input capacitance. The parts also have >2mAP-P AC input overload.

Both parts operate from a single +3.3V supply and consume 93mW. The MAX3744/MAX3745 are in a compact 30-mil x 50-mil die and require no external compensation capacitor. A space-saving filter connection is provided for positive bias to the photodiode through an on-chip 580Ù resistor to VCC. These features allow easy assembly into a low-cost TO-46 or TO-56 header with a photodiode.

The MAX3744 and MAX3748A receiver chip set provides an RSSI output using a Maxim-proprietary* interface technique. The MAX3744 preamplifier, MAX3748A postamplifier, and DS1858/DS1859 SFP controller meet all the SFF-8472 digital diagnostic requirements.

II. Manufacturing Information

C. Number of Device Transistors:

Α.	Description/Function:	2.7Gbps Transimpedance Amplifiers for Digital Diagnostic SFP Modules
В.	Process:	G4

D. Fabrication Location: Oregon E. Assembly Location: Philippines F. Date of Initial Production: 7/25/2003

III. Packaging Information

A. Package Type:	8-pin SOIC (N)
B. Lead Frame:	Copper
C. Lead Finish:	100% matte Tin
D. Die Attach:	Conductive Epoxy
E. Bondwire:	Au (1.0 mil dia.)
F. Mold Material:	Epoxy with silica filler
G. Assembly Diagram:	#05-0000-0017
H. Flammability Rating:	Class UL94-V0
I. Classification of Moisture Sensitivity per JEDEC standard J-STD-020-C	Level 1
J. Single Layer Theta Ja:	170°C/W
K. Single Layer Theta Jc:	40°C/W
L. Multi Layer Theta Ja:	136°C/W
M. Multi Layer Theta Jc:	38°C/W

IV. Die Information

A. Dimensions:	50 X 30 mils
B. Passivation:	Si ₃ N ₄
C. Interconnect:	Au
D. Backside Metallization:	None
E. Minimum Metal Width:	1.2 microns (as drawn) Metal 1, 2 & 3 5.6 microns (as drawn) Metal 4
F. Minimum Metal Spacing:	1.6 microns (as drawn) Metal 1, 2 & 3, 4.2 microns (as drawn) Metal 4
G. Bondpad Dimensions:	5 mil. Sq.
H. Isolation Dielectric:	SiO ₂
I. Die Separation Method:	Wafer Saw

V. Quality Assurance Information

A.	Quality Assurance Contacts:	Ken Wendel (Director, Reliability Engineering)
		Bryan Preeshl (Managing Director of QA)
В.	Outgoing Inspection Level:	0.1% for all electrical parameters guaranteed by the Datasheet.
		0.1% For all Visual Defects.
C.	Observed Outgoing Defect Rate:	< 50 ppm
D.	Sampling Plan:	Mil-Std-105D

VI. Reliability Evaluation

A. Accelerated Life Test

The results of the 150°C biased (static) life test are shown in Table 1. Using these results, the Failure Rate (λ) is calculated as follows:

 $\lambda = \underbrace{1}_{\text{MTTF}} = \underbrace{\frac{1.83}{192 \times 4340 \times 93 \times 2}}_{(\text{where } 4340 = \text{Temperature Acceleration factor assuming an activation energy of 0.8eV})$ $\lambda = 11.6 \times 10^{-9}$ $\lambda = 11.6 \text{ F.I.T. (60\% confidence level @ 25°C)}$

The following failure rate represents data collected from Maxim"s reliability monitor program. Maxim performs quarterly life test monitors on its processes. This data is published in the Reliability Report found at http://www.maxim-ic.com/qa/reliability/monitor. Cumulative monitor data for the G4 Process results in a FIT Rate of 0.02 @ 25C and 0.37 @ 55C (0.8 eV, 60% UCL)

B. Moisture Resistance Tests

The industry standard 85°C/85%RH or HAST testing is monitored per device process once a quarter.

C. E.S.D. and Latch-Up Testing

The HD40 die type has been found to have all pins able to withstand a HBM transient pulse of +/-800 V per Mil-Std 883 Method 3015.7. Latch-Up testing has shown that this device withstands a current of +/-250 mA.

Table 1 Reliability Evaluation Test Results

MAX3744ESA+

TEST ITEM	TEST CONDITION	FAILURE IDENTIFICATION	SAMPLE SIZE	NUMBER OF FAILURES	
Static Life Test (Note 1)					
	Ta = 150°C	DC Parameters	93	0	
	Biased	& functionality			
	Time = 192 hrs.				
Moisture Testing (Note 2)					
HAST	Ta = 130°C	DC Parameters	77	0	
	RH = 85%	& functionality			
	Biased				
	Time = 96hrs.				
Mechanical Stress (Note 2)					
Temperature	-65°C/150°C	DC Parameters	77	0	
Cycle	1000 Cycles	& functionality			
	Method 1010				

Note 1: Life Test Data may represent plastic DIP qualification lots.

Note 2: Generic Package/Process data