

RELIABILITY REPORT FOR MAX3741ETE

PLASTIC ENCAPSULATED DEVICES

January 5, 2009

MAXIM INTEGRATED PRODUCTS

120 SAN GABRIEL DR. SUNNYVALE, CA 94086

Approved by
Ken Wendel
Quality Assurance
Director, Reliability Engineering

Conclusion

The MAX3741ETE successfully meets the quality and reliability standards required of all Maxim products. In addition, Maxim's continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim"s quality and reliability standards.

Table of Contents

- I.Device Description V.Quality Assurance Information
- II.Manufacturing Information
- III.Packaging Information
-Attachments

- VI.Reliability Evaluation

IV.Die Information

I. Device Description

A. General

The MAX3741 is a high-speed VCSEL driver for smallform- factor (SFF) and small-form-factor pluggable (SFP) fiber-optic LAN transmitters. It contains a bias generator, laser modulator, and peaking current option to improve VCSEL edge speed. The driver accommodates common cathode and differential configurations. The MAX3741 operates up to 3.2Gbps. It can switch up to 15mA of laser modulation current and source up to 15mA of bias current. The MAX3741 is designed to interface with a digital potentiometer and control circuitry. The MAX3741 accommodates various VCSEL packages, including low-cost TO-46 headers. The MAX3741 is available in a compact 3mm x 3mm 16-pin thin QFN package and operates over a temperature range of -40°C to +85°C.

II. Manufacturing Information

B. Process:

3.2Gbps Compact SFP VCSEL Driver
G4

Oregon

October 07, 2002

Carsem Malaysia, UTL Thailand

- C. Number of Device Transistors:
- D. Fabrication Location:

A. Description/Function:

- E. Assembly Location:
- F. Date of Initial Production:

III. Packaging Information

A. Package Type:	16-pin TQFN 3x3
B. Lead Frame:	Copper
C. Lead Finish:	85Sn/15Pb plate
D. Die Attach:	None Epoxy
E. Bondwire:	Au (1.0 mil dia.)
F. Mold Material:	Epoxy with silica filler
G. Assembly Diagram:	#05-9000-0049
H. Flammability Rating:	Class UL94-V0
I. Classification of Moisture Sensitivity per JEDEC standard J-STD-020-C	Level 1
J. Multi Layer Theta Ja:	57.2°C/W
K. Multi Layer Theta Jc:	40°C/W

IV. Die Information

A. Dimensions:	81 X 81 mils
B. Passivation:	Si ₃ N ₄
C. Interconnect:	Au
D. Backside Metallization:	None
E. Minimum Metal Width:	1.2 microns (as drawn) Metal 1, 2 & 3 5.6 microns (as drawn) Metal 4
F. Minimum Metal Spacing:	1.6 microns (as drawn) Metal 1, 2 & 3, 4.2 microns (as drawn) Metal 4
G. Bondpad Dimensions:	5 mil. Sq.
H. Isolation Dielectric:	SiO ₂
I. Die Separation Method:	Wafer Saw

V. Quality Assurance Information

A. Quality Assurance Contacts:	Ken Wendel (Director, Reliability Engineering) Bryan Preeshl (Managing Director of QA)
	Divant reeshi (Managing Director of QA)
B. Outgoing Inspection Level:	0.1% for all electrical parameters guaranteed by the Datasheet.
	0.1% For all Visual Defects.
C. Observed Outgoing Defect Rate:	< 50 ppm
D. Sampling Plan:	Mil-Std-105D

VI. Reliability Evaluation

A. Accelerated Life Test

The results of the 135°C biased (static) life test are shown in Table 1. Using these results, the Failure Rate (λ) is calculated as follows:

 $\lambda = \underbrace{1}_{MTTF} = \underbrace{1.83}_{192 \text{ x } 4340 \text{ x } 90 \text{ x } 2} (Chi square value for MTTF upper limit)}_{(where 4340 = Temperature Acceleration factor assuming an activation energy of 0.8eV)}$ $\lambda = 11.9 \text{ x } 10^{-9}$

x = 11.9 F.I.T. (60% confidence level @ 25°C)

The following failure rate represents data collected from Maxim's reliability monitor program. Maxim performs quarterly 1000 hour life test monitors on its processes. This data is published in the Product Reliability Report found at http://www.maxim-ic.com/. Current monitor data for the G4 Process results in a FIT Rate of 0.2 @ 25C and 3.6 @ 55C (0.8 eV, 60% UCL)

B. Moisture Resistance Tests

The industry standard 85°C/85%RH or HAST testing is monitored per device process once a quarter.

C. E.S.D. and Latch-Up Testing

The HD31 die type has been found to have all pins able to withstand a HBM transient pulse of +/-400 V per Mil-Std 883 Method 3015.7. Latch-Up testing has shown that this device withstands a current of +/-250 mA.

Table 1 Reliability Evaluation Test Results

MAX3741ETE

TEST ITEM	TEST CONDITION	FAILURE IDENTIFICATION	SAMPLE SIZE	NUMBER OF FAILURES	
Static Life Test	(Note 1)				
	Ta = 135°C	DC Parameters	90	0	
	Biased	& functionality			
	Time = 192 hrs.				
Moisture Testing	(Note 2)				
85/85	Ta = 85°C	DC Parameters	77	0	
	RH = 85%	& functionality			
	Biased				
	Time = 1000hrs.				
Mechanical Stres	ss (Note 2)				
Temperature	-65°C/150°C	DC Parameters	77	0	
Cycle	1000 Cycles	& functionality			
	Method 1010	-			

Note 1: Life Test Data may represent plastic DIP qualification lots.

Note 2: Generic Package/Process data