MAX3640UCM Rev. A

RELIABILITY REPORT

FOR

MAX3640UCM

PLASTIC ENCAPSULATED DEVICES

February 8, 2002

MAXIM INTEGRATED PRODUCTS

120 SAN GABRIEL DR.

SUNNYVALE, CA 94086

Written by

Jim Pedicord Quality Assurance Reliability Lab Manager

Reviewed by

Yull

Bryan J. Preeshl Quality Assurance Executive Director

Conclusion

The MAX3640 successfully meets the quality and reliability standards required of all Maxim products. In addition, Maxim's continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim's quality and reliability standards.

Table of Contents

I.Device Description II.Manufacturing Information III.Packaging Information IV.Die Information V.Quality Assurance Information VI.Reliability Evaluation

.....Attachments

I. Device Description

A. General

The MAX3640 is a dual-path crosspoint switch for use at OC-12 data rates. The MAX3640 can be used to receive and transmit 622Mbps low-voltage differential signals (LVDS) across a backplane with minimum jitter accumulation. Each path incorporates input buffers, multiplexers, a crosspoint switch, and output drivers. The four output channels have a redundant set of outputs for test or fanning purposes. The device offers signal-path redundancy for critical data streams.

The MAX3640 has a unique power-saving feature. When a set of four output channels has been de-selected, the output drivers are powered down to reduce power consumption by 165mW. The fully differential architecture ensures low crosstalk, jitter accumulation, and signal skew.

The MAX3640 is available in a 48-pin TQFP package and operates from a +3.3V supply over the 0°C to +85°C temperature range.

B. Absolute Maximum Ratings

ltem	Rating
Supply Voltage, V _{CC}	-0.5V to +5.0V
Input Voltage (LVDS, TTL)	-0.5V to (VCC + 0.5V)
Output Voltage (LVDS)	-0.5V to (V _{CC} + 0.5V)
Storage Temp.	-55°C to +150°C
Lead Temp. (soldering, 10s)	+300°C
Continuous Power Dissipation (TA = +85°C)	
48-Pin TQFP	813mW
Derates above +85°C	
48-Pin TQFP	12.5mW/°C

II. Manufacturing Information

A	. Description/Function:	3.3V, 622Mbps LVDS, Dual 4:2 Crosspoint Switch
E	. Process:	GST2 (High-Speed Double Poly-Silicon Bipolar Process)
C	2. Number of Device Transistors:	2453
C	 Fabrication Location: 	Oregon, USA
E	. Assembly Location:	Korea
F	. Date of Initial Production:	March, 2000

III. Packaging Information

A. Package Type:	48-Pin TQFP
B. Lead Frame:	Copper
C. Lead Finish:	Solder Plate
D. Die Attach:	Silver-filled Epoxy
E. Bondwire:	Gold (1.0 mil dia.)
F. Mold Material:	Epoxy with silica filler
G. Assembly Diagram:	# 05-7001-0414
H. Flammability Rating:	Class UL94-V0
I. Classification of Moisture Sensitivity per JEDEC standard JESD22-A112:	Level 1
IV. Die Information	
A. Dimensions:	95 x 106 mils
B. Passivation:	Si_3N_4/SiO_2 (Silicon nitride/ Silicon dioxide)
C. Interconnect:	Poly / Au
D. Backside Metallization:	None
E. Minimum Metal Width:	1.4 microns (as drawn)
F. Minimum Metal Spacing:	1.4 microns (as drawn)
G. Bondpad Dimensions:	5 mil. Sq.
H. Isolation Dielectric:	SiO ₂
I. Die Separation Method:	Wafer Saw

V. Quality Assurance Information

A. Quality Assurance Contacts:

Jim Pedicord(Reliability Lab Manager)Bryan Preeshl(Executive Director of QA)Kenneth Huening(Vice President)

- B. Outgoing Inspection Level: 0.1% for all electrical parameters guaranteed by the Datasheet. 0.1% For all Visual Defects.
- C. Observed Outgoing Defect Rate: < 50 ppm
- D. Sampling Plan: Mil-Std-105D

VI. Reliability Evaluation

A. Accelerated Life Test

The results of the 150°C biased (static) life test are shown in **Table 1**. Using these results, the Failure Rate (λ) is calculated as follows:

 $\lambda = \underbrace{1}_{\text{MTTF}} = \underbrace{1.83}_{192 \text{ x } 9823 \text{ x } 45 \text{ x } 2} (\text{Chi square value for MTTF upper limit})$ Thermal acceleration factor assuming a 0.8eV activation energy

 $\lambda = 10.78 \times 10^{-9}$ $\lambda = 10.78$ F.I.T. (60% confidence level @ 25°C)

This low failure rate represents data collected from Maxim's reliability qualification and monitor programs. Maxim also performs weekly Burn-In on samples from production to assure the reliability of its processes. The reliability required for lots which receive a burn-in qualification is 59 F.I.T. at a 60% confidence level, which equates to 3 failures in an 80 piece sample. Maxim performs failure analysis on lots exceeding this level Maxim also performs 1000 hour life test monitors quarterly for each process. This data is published in the Product Reliability Report (**RR-1M**).

B. Moisture Resistance Tests

Maxim evaluates pressure pot stress from every assembly process during qualification of each new design. Pressure Pot testing must pass a 20% LTPD for acceptance. Additionally, industry standard 85°C/85%RH or HAST tests are performed quarterly per device/package family.

C. E.S.D. and Latch-Up Testing

The HF71 die type has been found to have all pins able to withstand a transient pulse of ± 2500 V, per Mil-Std-883 Method 3015 (reference attached ESD Test Circuit). Latch-Up testing has shown that this device withstands a current of ± 200 mA.

Table 1 Reliability Evaluation Test Results

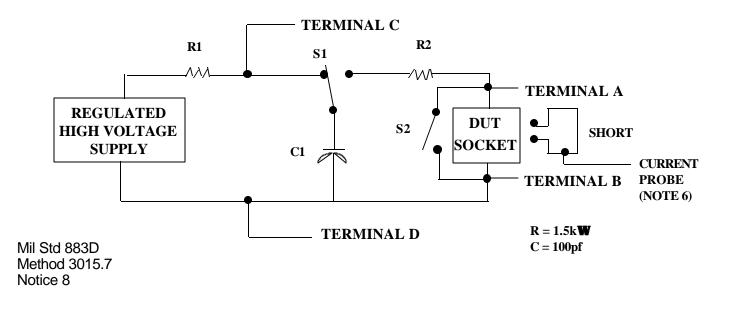
MAX3640UCM

TEST ITEM	TEST CONDITION	FAILURE IDENTIFICATION	PACKAGE	SAMPLE SIZE	NUMBER OF FAILURES
Static Life Test	. ,	DC Parameters		AE	0
	Ta = 150°C Biased Time = 192 hrs.	& functionality		45	0
Moisture Testi	ng (Note 2)				
Pressure Pot	Ta = 121°C P = 15 psi. RH= 100% Time = 168hrs.	DC Parameters & functionality	TQFP	77	0
85/85	Ta = 85°C RH = 85% Biased Time = 1000hrs.	DC Parameters & functionality		77	0
Mechanical Str	ress (Note 2)				
Temperature Cycle	-65°C/150°C 1000 Cycles Method 1010	DC Parameters		77	0

Note 1: Life Test Data may represent plastic D.I.P. qualification lots. Note 2: Generic Package/Process Data

Attachment #1

	Terminal A (Each pin individually connected to terminal A with the other floating)	Terminal B (The common combination of all like-named pins connected to terminal B)
1.	All pins except V _{PS1} <u>3/</u>	All V_{PS1} pins
2.	All input and output pins	All other input-output pins


TABLE II. Pin combination to be tested. 1/2/

- 1/ Table II is restated in narrative form in 3.4 below.
- $\overline{2/}$ No connects are not to be tested.
- $\overline{3/}$ Repeat pin combination I for each named Power supply and for ground

(e.g., where V_{PS1} is V_{DD} , V_{CC} , V_{SS} , V_{BB} , GND, $+V_{S}$, $-V_{S}$, V_{REF} , etc).

- 3.4 <u>Pin combinations to be tested.</u>
 - a. Each pin individually connected to terminal A with respect to the device ground pin(s) connected to terminal B. All pins except the one being tested and the ground pin(s) shall be open.
 - b. Each pin individually connected to terminal A with respect to each different set of a combination of all named power supply pins (e.g., V_{SS1}, or V_{SS2} or V_{SS3} or V_{CC1}, or V_{CC2}) connected to terminal B. All pins except the one being tested and the power supply pin or set of pins shall be open.

c. Each input and each output individually connected to terminal A with respect to a combination of all the other input and output pins connected to terminal B. All pins except the input or output pin being tested and the combination of all the other input and output pins shall be open.

PKG.CDDE:C48-5APPRIVALSDATEImage: March and the second and	1: