

RELIABILITY REPORT
FOR
MAX3228EEBV+T
CHIP SCALE PACKAGE

July 7, 2011

MAXIM INTEGRATED PRODUCTS

120 SAN GABRIEL DR. SUNNYVALE, CA 94086

Approved by
Sokhom Chum
Quality Assurance
Reliability Engineer

Conclusion

The MAX3228EEBV+T successfully meets the quality and reliability standards required of all Maxim products. In addition, Maxim's continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim's quality and reliability standards.

Table of Contents

IDevice Description	IVDie Information		
IIManufacturing Information	VQuality Assurance Information		
IIIPackaging Information	VIReliability Evaluation		
Attachments			

I. Device Description

A. General

The MAX3228E/AE and MAX3229E/AE are +2.5V to +5.5V powered EIA/TIA-232 and V.28/V.24 communications interfaces with low power requirements, high datarate capabilities, and enhanced electrostatic discharge (ESD) protection, in a chip-scale package (UCSP™) and WLP Package. All transmitter outputs and receiver inputs are protected to ±15kV using IEC 1000-4-2 Air- Gap Discharge, ±8kV using IEC 1000-4-2 Contact Discharge, and ±15kV using the Human Body Model.

The MAX3228E/AE and MAX3229E/AE achieve a 1ìA supply current with Maxim"s AutoShutdown™ feature. They save power without changes to existing BIOS or operating systems by entering low-power shutdown mode when the RS-232 cable is disconnected, or when the transmitters of the connected peripherals are off.

The transceivers have a proprietary low-dropout transmitter output stage, delivering RS-232 compliant performance from a +3.1V to +5.5V supply, and RS-232 compatible performance with a supply voltage as low as +2.5V. The dual charge pump requires only four small 0.1ìF capacitors for operation from a +3.0V supply. Each device is guaranteed to run at data rates of 250kbps while maintaining RS-232 output levels.

The MAX3228E/AE and MAX3229E/AE offer a separate power-supply input for the logic interface, allowing configurable logic levels on the receiver outputs and transmitter inputs. Operating over a +1.65V to VCC range, VL provides the MAX3228E/AE and MAX3229E/AE compatibility with multiple logic families.

The MAX3229E/AE contains one receiver and one transmitter. The MAX3228E/AE contains two receivers and two transmitters. The MAX3228E/AE and MAX3229E/AE are available in tiny chip-scale and WLP packaging and are specified across the extended industrial temperature range of -40°C to +85°C.

II. Manufacturing Information

A. Description/Function: ±15kV ESD-Protected +2.5V to +5.5V

RS-232 Transceivers in UCSP and WLP

B. Process:

C. Number of Device Transistors:

D. Fabrication Location: OregonE. Assembly Location: TexasF. Date of Initial Production: July 27, 2001

III. Packaging Information

A. Package Type: 30-bumps, UCSP, 5x6 Array

 B. Lead Frame:
 N/A

 C. Lead Finish:
 N/A

 D. Die Attach:
 N/A

 E. Bondwire:
 N/A

 F. Mold Material:
 N/A

G. Assembly Diagram: #05-9000-2221 / AH. Flammability Rating: Class UL94-V0

I. Classification of Moisture Sensitivity per

JEDEC standard J-STD-020-C

J. Single Layer Theta Ja: N/A
K. Single Layer Theta Jc: N/A
L. Multi Layer Theta Ja: 99.3
M. Multi Layer Theta Jc: N/A

IV. Die Information

A. Dimensions: 123 X 103 mils

B. Passivation: Si₃N₄/SiO₂ (Silicon nitride/ Silicon dioxide)

Level 1

C. Interconnect: Al/0.5%Cu with Ti/TiN Barrier

D. Backside Metallization: None

E. Minimum Metal Width: 3.0 microns (as drawn)F. Minimum Metal Spacing: 3.0 microns (as drawn)

G. Bondpad Dimensions:

H. Isolation Dielectric: SiO₂I. Die Separation Method: Wafer Saw

V. Quality Assurance Information

A. Quality Assurance Contacts: Richard Aburano (Manager, Reliability Engineering)

Don Lipps (Manager, Reliability Engineering)

Bryan Preeshl (Vice President of QA)

B. Outgoing Inspection Level: 0.1% for all electrical parameters guaranteed by the Datasheet.

0.1% For all Visual Defects.

C. Observed Outgoing Defect Rate: < 50 ppm
D. Sampling Plan: Mil-Std-105D

VI. Reliability Evaluation

A. Accelerated Life Test

The results of the 135°C biased (static) life test are shown in Table 1. Using these results, the Failure Rate (3) is calculated as follows:

$$_{\lambda}$$
 = $_{1}$ = $_{1.83}$ (Chi square value for MTTF upper limit)

MTTF = $_{192 \times 4340 \times 80 \times 2}$ (where 4340 = Temperature Acceleration factor assuming an activation energy of 0.8eV)

 $_{\lambda}$ = 13.7 x 10⁻⁹
 $_{\lambda}$ = 13.7 F.I.T. (60% confidence level @ 25°C)

The following failure rate represents data collected from Maxim's reliability monitor program. Maxim performs quarterly life test monitors on its processes. This data is published in the Reliability Report found at http://www.maxim-ic.com/qa/reliability/monitor. Cumulative monitor data for the S3 Process results in a FIT Rate of 0.04 @ 25C and 0.69 @ 55C (0.8 eV, 60% UCL)

B. E.S.D. and Latch-Up Testing (lot N670AA004 D/C 0204)

The RT30 die type has been found to have all pins able to withstand a HBM transient pulse of +/-800V per Mil-Std 883 Method 3015.7. Latch-Up testing has shown that this device withstands a current of +/-250mA.

Table 1

Reliability Evaluation Test Results

MAX3228EEBV+T

TEST ITEM	TEST CONDITION	FAILURE IDENTIFICATION	SAMPLE SIZE	NUMBER OF FAILURES	COMMENTS
Static Life Test (No	ote 1) Ta = 135°C Biased Time = 192 hrs.	DC Parameters & functionality	80	0	N671AQ001B, D/C 0124

Note 1: Life Test Data may represent plastic DIP qualification lots.