

RELIABILITY REPORT FOR MAX313FESE+ PLASTIC ENCAPSULATED DEVICES

November 30, 2009

MAXIM INTEGRATED PRODUCTS

120 SAN GABRIEL DR. SUNNYVALE, CA 94086

Approved by
Ken Wendel
Quality Assurance
Director, Reliability Engineering

Conclusion

The MAX313FESE+ successfully meets the quality and reliability standards required of all Maxim products. In addition, Maxim's continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim's quality and reliability standards.

Table of Contents

- I.Device Description V.Quality Assurance Information
- II.Manufacturing Information
- III.Packaging Information
-Attachments

VI.Reliability Evaluation

IV.Die Information

I. Device Description

A. General

The MAX312F/MAX313F/MAX314F are quad, single-pole/single-throw (SPST), fault-protected analog switches. They are pin compatible with the industry-standard nonprotected MAX312/MAX313/MAX314. These switches feature fault-protected inputs and rail-to-rail signal-handling capability. All analog signal terminals are protected from overvoltage faults up to \pm 36V with power on and up to \pm 40V with power off. During a fault condition, the COM_, NO_, or NC_ terminal becomes an open circuit and only microamperes of leakage current flow from the source. On-resistance is 10 (max) and is matched between switches to 0.5 (max) at +25°C. The MAX312F has four normally closed (NC) switches. The MAX313F has four normally open (NO) switches. The MAX314F has two NC and two NO switches. These CMOS switches operate with dual power supplies ranging from \pm 4.5V to \pm 20V or a single supply between +9V and +36V. All digital inputs have +0.8V and +2.4V logic thresholds, ensuring both TTL and CMOS logic compatibility when using \pm 15V or a single +12V supply. For supply voltages of \pm 5V, +5V, and +3V, refer to the MAX4711/MAX4712/MAX4713 data sheet.

II. Manufacturing Information

A. Description/Function: Quad, Rail-to-Rail, Fault-Protected, SPST Analog Switches
B. Process: S5
C. Number of Device Transistors:

Oregon

Malaysia, Philippines, Thailand

January 25, 2003

- u anoiotoro.
- D. Fabrication Location:E. Assembly Location:
- F. Date of Initial Production:

III. Packaging Information

A. Package Type:	16-pin SOIC (N)
B. Lead Frame:	Copper
C. Lead Finish:	100% matte Tin
D. Die Attach:	Conductive
E. Bondwire:	Au (1 mil dia.)
F. Mold Material:	Epoxy with silica filler
G. Assembly Diagram:	#05-9000-0012
H. Flammability Rating:	Class UL94-V0
I. Classification of Moisture Sensitivity per JEDEC standard J-STD-020-C	Level 1
J. Single Layer Theta Ja:	115°C/W
K. Single Layer Theta Jc:	32°C/W

IV. Die Information

A. Dimensions:	86 X 180 mils
B. Passivation:	Si_3N_4/SiO_2 (Silicon nitride/ Silicon dioxide)
C. Interconnect:	Al/0.5%Cu with Ti/TiN Barrier
D. Backside Metallization:	None
E. Minimum Metal Width:	5.0 microns (as drawn)
F. Minimum Metal Spacing:	5.0 microns (as drawn)
G. Bondpad Dimensions:	5 mil. Sq.
H. Isolation Dielectric:	SiO ₂
I. Die Separation Method:	Wafer Saw

V. Quality Assurance Information

A. Quality Assurance Contacts:	Ken Wendel (Director, Reliability Engineering)
	Bryan Preeshl (Managing Director of QA)
B. Outgoing Inspection Level:	0.1% for all electrical parameters guaranteed by the Datasheet. 0.1% For all Visual Defects.
C. Observed Outgoing Defect Rate:	< 50 ppm
D. Sampling Plan:	Mil-Std-105D

VI. Reliability Evaluation

A. Accelerated Life Test

The results of the 135°C biased (static) life test are shown in Table 1. Using these results, the Failure Rate (λ) is calculated as follows:

 $\lambda = \underbrace{1}_{\text{MTTF}} = \underbrace{1.83}_{192 \times 4340 \times 79 \times 2} \text{ (Chi square value for MTTF upper limit)}$ $\lambda = 13.6 \times 10^{-9}$ $\lambda = 13.6 \text{ F.I.T. (60\% confidence level @ 25°C)}$

The following failure rate represents data collected from Maxim"s reliability monitor program. Maxim performs quarterly life test monitors on its processes. This data is published in the Reliability Report found at http://www.maxim-ic.com/qa/reliability/monitor. Cumulative monitor data for the S5 Process results in a FIT Rate of 0.09 @ 25C and 1.55 @ 55C (0.8 eV, 60% UCL)

B. Moisture Resistance Tests

The industry standard 85°C/85%RH or HAST testing is monitored per device process once a quarter.

C. E.S.D. and Latch-Up Testing

The AH87-1 die type has been found to have all pins able to withstand a HBM transient pulse of +/-200 V per Mil-Std 883 Method 3015.7. Latch-Up testing has shown that this device withstands a current of +/-250 mA.

Table 1 Reliability Evaluation Test Results

MAX313FESE+

TEST ITEM	TEST CONDITION	FAILURE IDENTIFICATION	SAMPLE SIZE	NUMBER OF FAILURES	
Static Life Test	(Note 1)				
	Ta = 135°C	DC Parameters	79	0	
	Biased	& functionality			
	Time = 192 hrs.				
Moisture Testing	(Note 2)				
HAST	Ta = 130°C	DC Parameters	77	0	
	RH = 85%	& functionality			
	Biased				
	Time = 96hrs.				
Mechanical Stres	ss (Note 2)				
Temperature	-65°C/150°C	DC Parameters	77	0	
Cycle	1000 Cycles	& functionality			
	Method 1010				

Note 1: Life Test Data may represent plastic DIP qualification lots.

Note 2: Generic Package/Process data