

RELIABILITY REPORT

FOR

MAX248CQH+D

PLASTIC ENCAPSULATED DEVICES

April 15, 2011

MAXIM INTEGRATED PRODUCTS

120 SAN GABRIEL DR. SUNNYVALE, CA 94086

Approved by
Sokhom Chum
Quality Assurance
Reliability Engineer

Conclusion

The MAX248CQH+D successfully meets the quality and reliability standards required of all Maxim products. In addition, Maxim's continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim's quality and reliability standards.

Table of Contents

IDevice Description	IVDie Information		
IIManufacturing Information	VQuality Assurance Information		
IIIPackaging Information	VIReliability Evaluation		
Attachments			

I. Device Description

A. General

The MAX220-MAX249 family of line drivers/receivers is intended for all EIA/TIA-232E and V.28/V.24 communications interfaces, particularly applications where ±12V is not available. These parts are especially useful in battery-powered systems, since their low-power shutdown mode reduces power dissipation to less than 5µW. The MAX225, MAX233, MAX235, and MAX245/MAX246/MAX247 use no external components and are recommended for applications where printed circuit board space is critical.

II. Manufacturing Information

A. Description/Function: +5V-Powered, Multichannel RS-232 Drivers/Receivers

B. Process: SG5

C. Number of Device Transistors:

D. Fabrication Location: OregonE. Assembly Location: PhilippinesF. Date of Initial Production: Pre 1997

III. Packaging Information

A. Package Type: 44-pin PLCC
B. Lead Frame: Copper

C. Lead Finish: 100% matte Tin
D. Die Attach: Conductive
E. Bondwire: Au (1.3 mil dia.)
F. Mold Material: Epoxy with silica filler
G. Assembly Diagram: #05-0701-0481
H. Flammability Rating: Class UL94-V0

I. Classification of Moisture Sensitivity per Level 3

JEDEC standard J-STD-020-C

J. Single Layer Theta Ja: 75°C/W
K. Single Layer Theta Jc: 21°C/W
L. Multi Layer Theta Ja: N/A°C/W
M. Multi Layer Theta Jc: N/A°C/W

IV. Die Information

A. Dimensions: 156 X 178 mils

B. Passivation: Si₃N₄/SiO₂ (Silicon nitride/ Silicon dioxide)

C. Interconnect: AI/0.5%Cu with Ti/TiN Barrier

D. Backside Metallization: None

E. Minimum Metal Width: 5.0 microns (as drawn)F. Minimum Metal Spacing: 5.0 microns (as drawn)

G. Bondpad Dimensions: 5 mil. Sq.
 H. Isolation Dielectric: SiO₂
 I. Die Separation Method: Wafer Saw

V. Quality Assurance Information

A. Quality Assurance Contacts: Richard Aburano (Manager, Reliability Engineering)

Don Lipps (Manager, Reliability Engineering)

Bryan Preeshl (Vice President of QA)

B. Outgoing Inspection Level: 0.1% for all electrical parameters guaranteed by the Datasheet.

0.1% For all Visual Defects.

C. Observed Outgoing Defect Rate: < 50 ppm
D. Sampling Plan: Mil-Std-105D

VI. Reliability Evaluation

A. Accelerated Life Test

The results of the 135°C biased (static) life test are shown in Table 1. Using these results, the Failure Rate (λ) is calculated as follows:

$$_{\lambda}$$
 = $\frac{1}{\text{MTTF}}$ = $\frac{1.83}{1000 \times 4340 \times 231 \times 2}$ (Chi square value for MTTF upper limit) $_{\lambda}$ = 0.9 x 10⁻⁹ $_{\lambda}$ = 0.9 F.I.T. (60% confidence level @ 25°C)

The following failure rate represents data collected from Maxim's reliability monitor program. Maxim performs quarterly life test monitors on its processes. This data is published in the Reliability Report found at http://www.maxim-ic.com/qa/reliability/monitor. Cumulative monitor data for the SG5 Process results in a FIT Rate of 0.12 @ 25C and 2.04 @ 55C (0.8 eV, 60% UCL)

B. E.S.D. and Latch-Up Testing (lot NEXDFA012A D/C 9952)

The PS24-3 die type has been found to have all pins able to withstand a HBM transient pulse of +/-800V per Mil-Std 883 Method 3015.7. Latch-Up testing has shown that this device withstands a current of +/-250mA.

Table 1Reliability Evaluation Test Results

MAX248CQH+D

TEST ITEM	TEST CONDITION	FAILURE IDENTIFICATION	SAMPLE SIZE	NUMBER OF FAILURES	COMMENTS
Static Life Test ((Note 1)				
	Ta = 135°C	DC Parameters	77	0	NEXDFA080C, D/C 0208
	Biased	& functionality	77	0	NEXDFA080B, D/C 0208
	Time = 1000 hrs.		77	0	NEXDFA080D, D/C 0208

Note 1: Life Test Data may represent plastic DIP qualification lots.