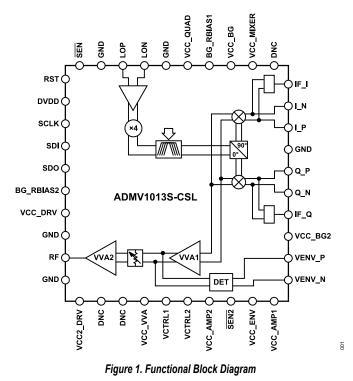


Commercial Space Product

24 GHz to 44 GHz, Wideband, Microwave Upconverter

FEATURES

- ▶ Wideband RF input frequency range: 24 GHz to 44 GHz
- ▶ 2 upconversion modes
 - Direct conversion from baseband I/Q to RF
 - ▶ Single-sideband upconversion from real IF
- ▶ LO input frequency range: 5.4 GHz to 10.25 GHz
- ▶ LO quadrupler for up to 41 GHz
- Matched 50 Ω single-ended RF output and IF inputs
- \blacktriangleright Option between matched 100 Ω balanced or 50 Ω single-ended LO inputs
- 100 Ω balanced baseband inputs
- ▶ Sideband suppression and carrier feedthrough optimization
- ▶ Variable attenuator for transceiver power control
- Programmable via 4-wire SPI
- ▶ 40-terminal land grid array package (LGA)


COMMERCIAL SPACE FEATURES

- Supports aerospace applications
- ► Wafer diffusion lot traceability
- Radiation monitors
 - ► Total ionizing dose (TID)
- Outgassing characterization

APPLICATIONS

- Low and medium Earth orbit (LEO/MEO) satellites
- Avionics
- Point to point microwave radios
- Radar and electronic warfare systems

FUNCTIONAL BLOCK DIAGRAM

Data Sheet

ADMV1013S-CSL

GENERAL DESCRIPTION

The ADMV1013S-CSL is a wideband, microwave upconverter optimized for point-to-point microwave radio designs operating in the 24 GHz to 44 GHz RF range.

The upconverter offers two modes of frequency translation. The device is capable of direct conversion to RF from baseband in-phase quadrature (I/Q) input signals, as well as single-sideband (SSB) upconversion from complex intermediate frequency (IF) inputs. The baseband I/Q input path can be disabled and modulated complex IF signals, anywhere from 0.8 GHz to 6.0 GHz, can be inserted in the IF path and upconverted to 24 GHz to 44 GHz while suppressing the unwanted sideband by typically better than 26 dBc. The serial port interface (SPI) allows adjustment of the quadrature phase and mixer gate voltage to allow optimum sideband suppression and local oscillator (LO) nulling. In addition, the SPI allows powering down the output envelope detector to reduce power consumption.

The ADMV1013S-CSL upconverter comes in a 40-terminal land grid array package (LGA) package. The ADMV1013S-CSL operates over the -40° C to $+85^{\circ}$ C case temperature range.

Additional application and technical information can be found in the Commercial Space Products Program brochure and ADMV1013 data sheet.

Rev. 0

DOCUMENT FEEDBACK

Information furnished by Analog Devices is believed to be accurate and reliable "as is". However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

TABLE OF CONTENTS

Features	1
Commercial Space Features	1
Applications	1
Functional Block Diagram	1
General Description	1
Specifications	3
Serial Port Register Timing	5
Radiation Test and Limit Specifications	5
Absolute Maximum Ratings	7

REVISION HISTORY

12/2024—Revision 0: Initial Version

Thermal Resistance	7
Outgas Testing	7
Radiation Features	7
Electrostatic Discharge (ESD) Ratings	8
ESD Caution	8
Pin Configuration and Function Descriptions	9
Typical Performance Characteristics	11
Outline Dimensions	12
Ordering Guide	12

Table 1 Specifications

IF and I/Q amplitude = -20 dBm, VCC_DRV = VCC2_DRV = VCC_AMP2 = VCC_ENV = VCC_AMP1 = VCC_BG2 = VCC_MIXER = VCC_BG = VCC_QUAD = 3.3 V, DVDD = VCC_VVA = 1.8 V, T_A = 25°C, and set Register 0x0A to 0xE700, unless otherwise noted.

Measurements in IF mode performed with a 90° hybrid, Register 0x03, Bit 7 = 1, IF input frequency (f_{IF}) = 3.5 GHz.

Measurements in I/Q mode are measured as a composite of the I and Q channel performance, common-mode voltage (V_{CM}) = 0 V, Register 0x03, Bit 7 = 0, and Register 0x05, Bits[6:0] = 0x051, unless otherwise noted. I/Q baseband frequency (f_{BB}) = 100 MHz.

VCTRL1 = VCTRL2. V_{CTRL} is the attenuation voltage at the VCTRL1 and VCTRL2 pins. V_{CTRL} = 1800 mV, unless otherwise specified.

Parameter	Test Conditions/Comments	Min	Тур	Max	Unit
FREQUENCY RANGES					
RF Output		24		44	GHz
LO Input		5.4		10.25	GHz
LO Quadrupler		21.6		41	GHz
IF Input		0.8		6.0	GHz
Baseband (BB) I/Q Input		DC		6.0	GHz
LO AMPLITUDE RANGE		-6	0	+6	dBm
I/Q MODULATOR PERFORMANCE					
Conversion Gain	At maximum gain				
24 GHz to 40 GHz	f _{BB} ≤ 3.5 GHz	18	23		dB
	6 GHz > f _{BB} > 3.5 GHz		21		dB
40 GHz to 44 GHz			19		dB
Voltage Variable Attenuator (VVA) Control Range			35		dB
SSB Noise Figure	At maximum gain				
24 GHz to 40 GHz			18		dB
40 GHz to 44 GHz			19		dB
Output Third-Order Intercept (IP3)	At maximum gain				
24 GHz to 40 GHz		20	23		dBm
40 GHz to 44 GHz			22		dBm
Output 1 dB Compression Point (P1dB)	At maximum gain				
24 GHz to 40 GHz		10	13		dBm
40 GHz to 44 GHz			12		dBm
Sideband Rejection (SBR)	24 GHz to 44 GHz, at maximum gain				
Uncalibrated			32		dBc
IF SINGLE-SIDEBAND UPCONVERSION PERFORMANCE					
Conversion Gain	At maximum gain				
24 GHz to 40 GHz	f _{IF} ≤ 3.5 GHz	13	18		dB
	6 GHz > f _{IF} > 3.5 GHz		12		dB
40 GHz to 44 GHz			14		dB
VVA Control Range			35		dB
SSB Noise Figure	At maximum gain				
24 GHz to 40 GHz			25		dB
40 GHz to 44 GHz			28		dB
Output IP3	At maximum gain				
24 GHz to 40 GHz		20	23		dBm
40 GHz to 44 GHz			22		dBm
Output P1dB	At maximum gain				
24 GHz to 40 GHz	-	10	13		dBm
40 GHz to 44 GHz			12		dBm

Table 1. Specifications (Continued)

Parameter	Test Conditions/Comments	Min	Тур	Max	Unit
SBR	24 GHz to 44 GHz, at maximum gain				
Uncalibrated			26		dBc
Calibrated	Calibrated using LOAMP_PH_ADJ_Q_FINE and LOAMP_PH_ADJ_I_FINE bits		36		dBc
ENVELOPE DETECTOR PERFORMANCE					
Output Level	For optimum performance				
Minimum			-45		dBm
Maximum			-20		dBm
Envelope Bandwidth	Measured with two tones with total power output (P_{OUT}) at RF = 10 dBm				
3 dB	RF frequency (f _{RF}) = 28 GHz		350		MHz
10 dB	f _{RF} = 28 GHz		1		GHz
RETURN LOSS					
RF Output	50 Ω single-ended		-8		dB
LO Input	100Ω differential		-12		dB
IF Input	50 Ω single-ended		-12		dB
Baseband Input	100Ω differential		-10		dB
Baseband I/Q Input Impedance			100		Ω
LEAKAGE	At maximum gain				
Fundamental LO to RF	7 c maximum gain		-80		dBm
4 × LO to RF			00		dBiii
5.4 GHz to 6.8 GHz LO	Uncalibrated		-12		dBm
6.8 GHz to 10.25 GHz LO	Uncalibrated		-20		dBm
5.4 GHz to 10.25 GHz LO	Calibrated using MXER_OFF_ADJ_I_N,		-45		dBm
0.4 01/2 10 10.20 01/2 10	MXER_OFF_ADJ_L_P, MXER_OFF_ADJ_Q_N, MXER_OFF_ADJ_Q_P bits at V _{CTRL} = 1800 mV, IF mode		40		
5 × LO to RF	ii modo		-55		dBm
Fundamental LO to IF			-70		dBm
Fundamental LO to I/Q			-75		dBm
LOGIC INPUTS					
Input Voltage Range					
High, V _{INH}		DVDD - 0.4		1.8	V
Low, V _{INL}		0		0.4	V
Input Current, I _{INH} /I _{INL}		0	100	0.4	μA
Input Capacitance, C _{IN}			3		pF
			0		Pi
Output Voltage Range					
High, V _{OH}		DVDD - 0.4		1.8	V
Low, V _{OL}		0		1.0 0.4	V
Output High Current, I _{OH}		0		0.4 500	
POWER INTERFACE				500	μA
VCC_DRV, VCC2_DRV, VCC_AMP2, VCC_ENV, VCC_AMP1, VCC_BG2, VCC_MIXER, VCC_BG, and VCC_QUAD		3.15	3.3	3.45	V
3.3 V Supply Current	V _{CTRL} = 1.8 V, no IF, and I/Q or LO input signal		550		mA
DVDD and VCC_VVA		1.7	1.8	1.9	V
1.8 V Supply Current	V _{CTRL} = 1.8 V, no IF, and I/Q or LO input signal		3	1.0	mA
Total Power Consumption			1.9		W
		1	1.0		

SERIAL PORT REGISTER TIMING

Table 2. Serial Port Register Timing

Parameter	Description	Min	Тур	Max	Unit
t _{SDI, SETUP}	Data to clock setup time	10			ns
t _{SDI, HOLD}	Data to clock hold time	10			ns
t _{SCLK, HIGH}	Clock high duration	40 to 60			%
t _{SCLK, LOW}	Clock low duration	40 to 60			%
tSCLK, SEN/SEN2 SETUP	Clock to SEN/SEN2 setup time	30			ns
t _{SCLK, DOT}	Clock to data out transition time			10	ns
SCLK, DOV	Clock to data out valid time			10	ns
tSCLK, SEN/SEN2 INACTIVE	Clock to SEN/SEN2 inactive	20			ns
	Inactive SEN/SEN2 (between two operations)	80			ns

Serial Port Register Timing Diagram

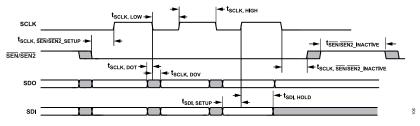


Figure 2. Serial Port Register Timing Diagram

RADIATION TEST AND LIMIT SPECIFICATIONS

IF and I/Q amplitude = -20 dBm, VCC_DRV = VCC2_DRV = VCC_AMP2 = VCC_ENV = VCC_AMP1 = VCC_BG2 = VCC_MIXER = VCC_BG = VCC_QUAD = 3.3 V, DVDD = VCC_VVA = 1.8 V, T_A = 25°C, and set Register 0x0A to 0xE700, unless otherwise noted.

Measurements in IF mode performed with a 90° hybrid, Register 0x03, Bit 7 = 1, IF input frequency (f_{IF}) = 3.5 GHz.

Measurements in I/Q mode are measured as a composite of the I and Q channel performance, common-mode voltage (V_{CM}) = 0 V, Register 0x03, Bit 7 = 0, and Register 0x05, Bits[6:0] = 0x051, unless otherwise noted. I/Q baseband frequency (f_{BB}) = 100 MHz.

VCTRL1 = VCTRL2. V_{CTRL} is the attenuation voltage at the VCTRL1 and VCTRL2 pins. V_{CTRL} = 1800 mV, unless otherwise specified.

Table 3. Radiation Test and Limit Specifications

Parameter	Test Conditions/Comments	Min	Тур	Max	Unit
I/Q MODULATOR PERFORMANCE					
Conversion Gain	At maximum gain				
At 24 GHz		18	23		dB
At 28 GHz		18	23		dB
At 39 GHz		18	23		dB
Output P1dB	At maximum gain				
At 24 GHz		10	13		dBm
At 28 GHz		10	13		dBm
At 39 GHz		10	13		dBm
Output IP3	At maximum gain, upper sideband				
At 24 GHz		20	23		dBm
At 28 GHz		20	23		dBm
At 39 GHz		20	23		dBm

Table 3. Radiation	Test and Limit Specifications	(Continued)
--------------------	-------------------------------	-------------

Parameter	Test Conditions/Comments	Min	Тур	Max	Unit
IF SINGLE-SIDEBAND UPCONVERSION PERFORMANCE					
Conversion Gain	At maximum gain				
At 24 GHz		13	18		dB
At 28 GHz		13	18		dB
At 39 GHz		13	18		dB
Output P1dB	At maximum gain				
At 24 GHz		10	13		dBm
At 28 GHz		10	13		dBm
At 39 GHz		10	13		dBm
Output IP3	At maximum gain, upper sideband				
At 24 GHz,		20	23		dBm
At 28 GHz		20	23		dBm
At 39 GHz		20	23		dBm
POWER INTERFACE					
VCC_DRV, VCC2_DRV, VCC_AMP2, VCC_ENV, VCC_AMP1, VCC_BG2, VCC_MIXER, VCC_BG, and VCC_QUAD					
3.3 V Supply Current	V _{CTRL} = 1.8 V, no IF, and I/Q or LO input signal		550		mA
DVDD					
1.8 V Supply Current	V _{CTRL} = 1.8 V, no IF, and I/Q or LO input signal			210	μA
Total Current IF Mode Detector On ¹			553	760	mA

¹ The total current IF mode detector on is equivalent to the total current drawn at the 1.8 V and 3.3 V supplies.

ABSOLUTE MAXIMUM RATINGS

Table 4. Absolute Maximum Ratings

Parameter	Rating
Supply Voltage	
VCC_DRV, VCC2_DRV, VCC_AMP2, VCC_ENV, VCC_AMP1, VCC_BG2, VCC_BG, and VCC_MIXER	3.6 V
DVDD and VCC_VVA	2.0 V
IF Input Power	5 dBm
I/Q Input Power	5 dBm
LO Input Power	9 dBm
Maximum Junction Temperature	125°C
Maximum Power Dissipation ¹	2.9 W
Lifetime at Maximum Junction Temperature (T_J)	1 × 10 ⁶ hours
Operating Case Temperature Range	-40°C to +85°C
Storage Temperature Range	-55°C to +125°C
Lead Temperature (Soldering 60 sec)	260°C
Moisture Sensitivity Level (MSL) Rating ²	MSL3

 $^1~$ The maximum power dissipation is a theoretical number calculated by (T_J – $85^\circ\text{C})/\theta_{JC~TOP}.$

² Based on IPC/JEDEC J-STD-20 MSL classifications.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

THERMAL RESISTANCE

Thermal performance is directly linked to printed circuit board (PCB) design and operating environment. Careful attention to PCB thermal design is required.

 θ_{JA} is the natural convection junction to ambient thermal resistance measured in a one cubic foot sealed enclosure. θ_{JC} is the junction to case thermal resistance.

 θ_{JA} and θ_{JC} must only be used to compare the thermal performance of the different packages if all test conditions listed are similar to JEDEC specifications. Instead, Ψ_{JT} and Ψ_{JB} can be used to calculate the junction temperature of the device by using the following equations:

$$T_J = (P \times \Psi_{JT}) + T_{TOP}$$
⁽¹⁾

where:

P refers to the total power dissipation in the chip (W). Ψ_{JT} refers to the junction to top thermal characterization number. T_{TOP} refers to the package top temperature (°C) and is measured at the top center of the package.

$$T_{J} = (P \times \Psi_{JB}) + T_{BOARD}$$
(2)

where:

P refers to the total power dissipation in the chip (W). Ψ_{JB} refers to the junction to board thermal characterization number. ADMV1013S-CSL

 T_{BOARD} refers to the board temperature measured on the midpoint of the longest side of the package, no more than 1 mm from the edge of the package body (°C).

As stated in JEDEC51-12, the previous equations must be used when no heat sink or heat spreader is present. When a heat sink or heat spreader is added, estimating and calculating junction temperature can be achieved using θ_{JC} TOP.

Table 5. Thermal Resistance

Package Type ¹	θ_{JA}^2	$\theta_{\text{JC}_{\text{TOP}}^3}$	θ_{JB}^{4}	Ψ _{JT} ⁵	Ψ _{JB} ⁶	Unit
CC-40-5	28	13.8	11.1	6.4	13.8	°C/W

¹ The thermal resistance values specified in Table 5 are simulated based on JEDEC specifications, unless specified otherwise, and must be used in compliance with JESD51-12.

 2 θ_{JA} is the junction to ambient thermal resistance in a natural convection, JEDEC environment.

³ $\theta_{JC TOP}$ is the junction to case (top) JEDEC thermal resistance.

- ⁴ θ_{JB} is the junction to board JEDEC thermal resistance.
- 5 Ψ_{JT} is the junction to top JEDEC thermal characterization parameter.
- 6 Ψ_{JB} is the junction to board JEDEC thermal characterization parameter.

OUTGAS TESTING

The criteria used for the acceptance and rejection of materials shall be determined by the user and based upon specific component and system requirements. Historically, a total mass loss (TML) of 1.00% and collected volatile condensable material (CVCM) of 0.10% have been used as screening levels for rejection of spacecraft materials.

Table 6. Outgas Testing

Specification (Tested per ASTM E595-15)	Value	Unit
Total Mass Loss	0.09	%
Collected Volatile Condensable Material	<0.01	%
Water Vapor Recovered	0.05	%

RADIATION FEATURES

Table 7. Radiation Features

Specifications	Value	Unit
Maximum Total Dose Available (Dose Rate = 50 rad	50	krad (Si)
(Si)/sec to 300 rad (Si)/sec) ¹		

¹ Guaranteed by device and process characterization. Contact Analog Devices, Inc, Technical Support for data available up to 50 krads.

ABSOLUTE MAXIMUM RATINGS

ELECTROSTATIC DISCHARGE (ESD) RATINGS

The following ESD information is provided for handling of ESD-sensitive devices in an ESD protected area only.

Human body model (HBM) per ANSI/ESDA/JEDEC JS-001.

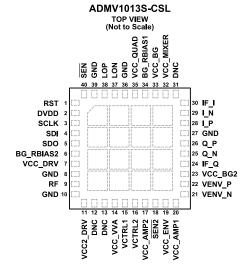
Field induced charged device model (FICDM) per ANSI/ESDA/JE-DEC JS-002.

ESD Ratings for ADMV1013S-CSL

Table 8. ADMV1013S-CSL, 40-Terminal LGA

ESD Model	Withstand Threshold (V)	Class
НВМ	±1500 ¹	1C
FICDM	±1250 ¹	C3
	±500 ²	C2a

¹ For all pins except the RF pins (RF, IF_Q, IF_I, Q_N, Q_P, I_P, I_N, LON, LOP, VENV_N, and VENV_P).


² For all pins.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

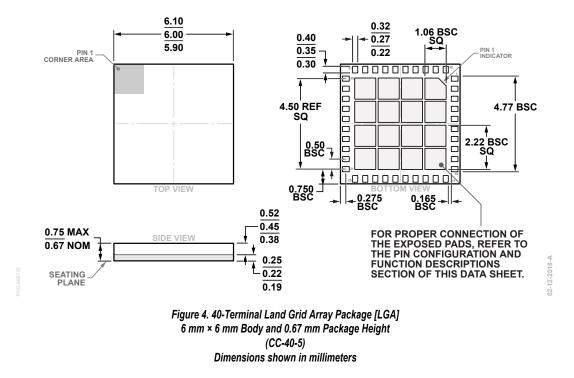
NOTES 1. DNC = DO NOT CONNECT. DO NOT CONNECT TO THESE PINS. 2. EXPOSED PAD. SOLDER THE EXPOSED PAD TO A LOW IMPEDANCE GROUND PLANE.

Figure 3. Pin Configuration

Table 9. Pin Function Descriptions

Pin No. Mnemonic		Description		
1	RST	SPI Reset. Connect this pin to logic high for normal operation. The SPI logic is 1.8 V.		
2	DVDD	1.8 V SPI Digital Supply.		
3	SCLK	SPI Clock Digital Input.		
4	SDI	SPI Serial Data Input.		
5	SDO	SPI Serial Data Output.		
6	BG_RBIAS2	Voltage Gain Amplifier (VGA) Chip Band-Gap Circuit, External High Precision Resistor. Place a 1.1 kΩ, high precision resisto shunt to ground close to this pin.		
7	VCC_DRV	3.3 V Power Supply for RF Driver. Place a 100 pF, a 0.01 µF, and a 10 µF capacitor close to this pin.		
8, 10, 27, 36, 39	GND	Grounds.		
9	RF	RF Output. This pin is DC-coupled internally to GND and matched to 50 Ω single ended.		
11	VCC2_DRV	3.3 V Power Supply for RF Predriver. Place a 100 pF, a 0.01 µF, and a 10 µF capacitor close to this pin.		
12, 13, 31	DNC	Do Not Connect. Do not connect to these pins.		
14	VCC_VVA	1.8 V Power Supply for VVA Control Circuit. Place a 100 pF, 0.01 μF, and a 10 μF capacitor close to this pin.		
15	VCTRL1	RF Voltage Variable Attenuator 1 (VVA1) Control Voltage. Place a 1 k Ω series resistor with this pin.		
16	VCTRL2	RF Voltage Variable Attenuator 2 (VVA2) Control Voltage. Place a 1 kΩ series resistor with this pin.		
17	VCC_AMP2	3.3 V Power Supply for RF Amplifier 2 (AMP2). Place a 100 pF, a 0.01 µF, and a 10 µF capacitor close to this pin.		
18	SEN2	SPI Serial Enable for VGA Chip. Connect this pin with Pin 40 (SEN).		
19	VCC_ENV	3.3 V Power Supply for Envelope Detector. Place a 100 pF, a 0.01 µF, and a 10 µF capacitor close to this pin.		
20	VCC_AMP1	3.3 V Power Supply for RF Amplifier 1 (AMP1). Place a 100 pF, a 0.01 µF, and a 10 µF capacitor close to this pin.		
21	VENV_N	Negative Differential Envelope Detector Output.		
22	VENV_P	Positive Differential Envelope Detector Output.		
23	VCC_BG2	3.3 V Power Supply for VGA Chip Band-Gap Circuit. Place a 100 pF, a 0.01 µF, and a 10 µF capacitor close to this pin.		
24, 30	IF_Q, IF_I	IF Single-Ended Complex Inputs. These pins are internally AC-coupled. When in IF mode, Pin 25 (Q_N), Pin 26 (Q_P), Pin 26 (I_P), and Pin 29 (I_N) must be kept floating.		
25, 26	Q_N, Q_P	Differential Baseband Q Inputs. These pins are DC-coupled. Do not connect these pins in IF mode.		
28, 29	I_P, I_N	Differential Baseband I Inputs. These pins are DC-coupled. Do not connect these pins in IF mode.		
32	VCC_MIXER	3.3 V Power Supply for Mixer. Place a 100 pF, a 0.01 µF, and a 10 µF capacitor close to this pin.		
33	VCC_BG	3.3 V Power Supply for Mixer Chip Band-Gap Circuit. Place a 100 pF, a 0.01 µF, and a 10 µF capacitor close to this pin.		

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS


Table 9. Pin Function Descriptions (Continued)

Pin No.	Mnemonic	Description
34	BG_RBIAS1	Mixer Chip Band-Gap Circuit, External High Precision Resistor. Place a 1.1 kΩ, high precision resistor shunt to ground close to this pin.
35	VCC_QUAD	3.3 V Power Supply for Quadruppler. Place a 100 pF, a 0.01 µF, and a 10 µF capacitor close to this pin.
37, 38	LON, LOP	Negative and Positive Differential Local Oscillator Inputs. These pins are DC-coupled internally to ground and matched to 100 Ω differential or 50 Ω single ended. If using the LO as single ended, terminate the unused LO port with 50 Ω impedance to ground.
40	SEN	SPI Serial Enable for the Mixer Chip. Connect this pin with Pin 18 (SEN2).
	EPAD	Exposed Pad. Solder the exposed pad to a low impedance ground plane.

TYPICAL PERFORMANCE CHARACTERISTICS

See the ADMV1013 data sheet for a full set of typical performance characteristics plots.

OUTLINE DIMENSIONS

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Packing Quantity	Package Option
ADMV1013ACCZR7-CSL	-40°C to +85°C	40-Terminal LGA (6 mm × 6 mm × 0.67 mm)	Reel, 500	CC-40-5

¹ Z = RoHS Compliant Part.

