

2 – 20 GHz Low Noise AGC Amplifier

ADH463S

1.0 SCOPE

This specification documents the detail requirements for an internally defined equivalent flow per MIL-PRF-38535 Class V except as modified herein.

The manufacturing flow described in the RF & MICROWAVE STANDARD SPACE LEVEL PRODUCTS PROGRAM brochure is to be considered a part of this specification.

This data specifically details the space grade version of this product. A more detailed operational description and a complete data sheet for commercial product grades can be found at http://www.analog.com/HMC463LH250.

2.0 Part Number

2.1. The complete part number(s) of this specification follows:

Specific Part Number	<u>Description</u>
ADH463-701LH250	2 – 20 GHz, Low Noise AGC Amplifier

3.0 Case Outline

The case outline is as follows:

Outline Letter	Descriptive Designator	<u>Terminals</u>	<u>Lead Finish</u>	Package style
Х	E-12-6	12 Lead	Gold	Ceramic Hermetic SMT (LH250)

FUNCTIONAL BLOCK DIAGRAM 1/

Figure 1 – Functional Block Diagram 1/ Package top view

ASD0016629B

Rev. B Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective companies.

One Analog Way, Wilmington, MA 01887, U.S.A. Tel: 781.935.5565 www.analog.com Fax: 800.262.5643 © 2023 Analog Devices, Inc. All rights reserved.

ADH463S

Package: X					
Pin Number	Terminal Symbol	Lead Type	Pin Description	Interface Schematic	
1,2,4,5,7,8 ,10	GND	Power	Ground <u>1</u> /		
3	RFIN	RF I/O	RF Input <u>2</u> /		
6	Vgg1	Power	Gate Control	Vgg10	
9	RFOUT	RF I/O	RF Output <u>2</u> /	○ RFOUT	
11	Vdd	Power	Power Supply Voltage	⊖Vdd 	
12	Vgg2	Power	Optional Gate Control if AGC is required <u>3</u> /	Vgg2	
Package Base	GND	Power	Ground <u>1</u> /		
Package Lid	GND	Power	Ground <u>1</u> /		

Figure 2 - Terminal Connections

1/ The package bottom has an exposed metal pad that must connect the printed circuit board (PCB) RF/DC ground.
2/ This lead is DC-coupled and matched to 50 ohms. A DC blocking capacitor is required if the RF line potential does not equal 0 Vdc.
3/ Leave Vgg2 open circuited if AGC is not required.

4.0 Specifications

4.1.	<u>Absolute Maximum Ratings 1</u> /	
	Drain Bias Voltage (Vdd)	+9 Vdc
	Gate Bias Voltage (Vgg1)	-2 Vdc to 0 Vdc
	Gate Bias Current (Igg1)	2.5 mA
	Gate Bias Voltage (Vgg2) (AGC)	(Vdd -9) Vdc to +2 Vdc
	RF Input Power (RFIN) (Vdd= +5 Vdc)	+18 dBm <u>2</u> /
	Continuous Pdiss (T = 85 °C) (derate 16.7 mW/°C above 85 °C)	1.08 W
	Channel Temperature	+175 °C
	Storage Temperature Range	-65 °C to +150 °C
	Junction Temperature Maximum (T _J)	102.97 °C
	Thermal Resistance (Channel to package bottom)	59.9 °C/W
	ESD Sensitivity (HBM)	Class 0B, passed 150 V
42		
	Recommended Operating Conditions	
	Ambient Operating Temperature Range (T _A)	-40 °C to +85 °C
1.2.	Ambient Operating Temperature Range (T_A)	-40 °C to +85 °C
4.3.	Ambient Operating Temperature Range (T _A)	-40 °C to +85 °C
4.3.	Ambient Operating Temperature Range (T _A) Nominal Operating Performance Characteristics 3/ Input Return Loss (S11) (2-6 GHz)	-40 °C to +85 °C 15 dB
4.3.	Ambient Operating Temperature Range (T _A) <u>Nominal Operating Performance Characteristics 3/</u> Input Return Loss (S11) (2-6 GHz) Input Return Loss (S11) (6-16 GHz)	-40 °C to +85 °C 15 dB 15 dB
4.3.	Ambient Operating Temperature Range (T _A) <u>Nominal Operating Performance Characteristics 3/</u> Input Return Loss (S11) (2-6 GHz) Input Return Loss (S11) (6-16 GHz)	-40 °C to +85 °C 15 dB 15 dB 9 dB
4.3.	Recommended Operating Conditions Ambient Operating Temperature Range (T _A) Nominal Operating Performance Characteristics 3/ Input Return Loss (S11) (2-6 GHz) Input Return Loss (S11) (6-16 GHz) Input Return Loss (S11) (16-20 GHz) Output Return Loss (S22) (2-6 GHz)	-40 °C to +85 °C 15 dB 15 dB 9 dB 11 dB
4.3.	Ambient Operating Temperature Range (T _A) <u>Nominal Operating Performance Characteristics 3/</u> Input Return Loss (S11) (2-6 GHz) Input Return Loss (S11) (6-16 GHz) Input Return Loss (S11) (16-20 GHz) Output Return Loss (S22) (2-6 GHz) Output Return Loss (S22) (6-16 GHz)	-40 °C to +85 °C 15 dB 15 dB 9 dB 11 dB 15 dB
4.3.	Recommended Operating Conditions Ambient Operating Temperature Range (T _A) Nominal Operating Performance Characteristics 3/ Input Return Loss (S11) (2-6 GHz) Input Return Loss (S11) (6-16 GHz) Input Return Loss (S11) (16-20 GHz) Output Return Loss (S22) (2-6 GHz) Output Return Loss (S22) (6-16 GHz) Output Return Loss (S22) (16-20 GHz)	-40 °C to +85 °C 15 dB 15 dB 9 dB 11 dB 15 dB 9 dB
4.3.	Recommended Operating Conditions Ambient Operating Temperature Range (T _A) Nominal Operating Performance Characteristics 3/ Input Return Loss (S11) (2-6 GHz) Input Return Loss (S11) (6-16 GHz) Input Return Loss (S11) (16-20 GHz) Output Return Loss (S22) (2-6 GHz) Output Return Loss (S22) (6-16 GHz) Output Return Loss (S22) (16-20 GHz) Saturated Output Power (2-6 GHz)	-40 °C to +85 °C 15 dB 15 dB 9 dB 11 dB 15 dB 9 dB 21.5 dBm

1/ Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions outside of those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

 $\frac{1}{2}$ /Frequency = 2 GHz - 20 GHz $\frac{3}{All typical specifications are at T_A = +25 °C, Vdd = +5 Vdc, Vgg2 = Open, Idd = 60 mA. ($ *Adjust Vgg1 between -2 Vdc to -0 Vdc to achieve Idd= 60 mA typical.*)

Saturated Output Power (16-20 GHz)..... 19 dBm

4/ Psat specified as OP5dB.

Parameter	Complete I	Conditions <u>1</u> /	Group A	Lin	nits	11
See notes at end of table	Symbol	Unless otherwise specified	Subgroups	Min	Max	Units
Frequency = 2 GHz Continuous Wave (C)	N) input		•			
Gain	S21	RFIN =-25 dBm	4,5,6	11.5		dB
Gain Flatness	٨GP	BEIN =-25 dBm	4		±0.35	dB
	801		5,6		±0.45	dB
Gain Variation Over Temperature <u>2</u> /	S21/ºC	RFIN =-25 dBm	4, 5, 6		0.025	dB/ºC
Noise Figure	NF		4		5.5	dB
Output Power for 1dB Compression 2/3/	OP1dB		4.5.6	16	0	dBm
	0100		4,5	25		10
Output Third Order Intercept <u>2</u> / <u>4</u> /	OIP3		6	22		dBm
Frequency = 6 GHz Continuous Wave (C)	N) input					
Gain	S21	RFIN =-25 dBm	4,5,6	11.5		dB
Gain Flatness	٨GP	RFIN =-25 dBm	4		±0.7	dB
			5,6		±0.85	dB
Gain Variation Over Temperature <u>2</u> /	S21/ºC	RFIN =-25 dBm	4, 5, 6		0.025	dB/ºC
Noise Figure	NF		4		5.5	dB
			5,6	10	6	dB
Output Power for 1dB Compression <u>2</u> / <u>3</u> /	OPIdB		4,5,6	16		dBm
Output Third Order Intercept <u>2</u> / <u>4</u> /	OIP3		4,5	25		dBm
Frequency - 16 GHz Continuous Waye ((- W) input		0	22		
Gain	S21	RFIN =-25 dBm	4.5.6	10.2		dB
			4		±0.9	dB
Gain Flatness	ΔGP	RFIN =-25 dBm	5,6		±1.35	dB
Gain Variation Over Temperature <u>2</u> /	S21/ºC	RFIN =-25 dBm	4, 5, 6		0.025	dB/ºC
Noise Figure			4		4.5	dB
Noise Figure			5,6		5.5	dB
Output Power for 1dB Compression <u>2</u> / <u>3</u> /	OP1dB		4,5,6	13		dBm
			4	23		
Output Third Order Intercept <u>2</u> / <u>4</u> /	OIP3		5	22		dBm
			6	18		
Frequency = 20 GHz Continuous Wave (C	W) input		456	0		٩D
Gain	521	RFIN =-25 dBm	4,5,0	8	+0.0	dB dB
Gain Flatness	ΔGP	RFIN =-25 dBm	56		±0.9 +1 35	dB
Gain Variation Over Temperature 2/	S21/ºC	RFIN =-25 dBm	4, 5, 6		0.025	dB/ºC
			4		5.5	dB
Noise Figure	NF		5,6		6.5	dB
Output Power for 1dB Compression <u>2</u> / <u>3</u> /	OP1dB		4,5,6	10		dBm
			4	20		
Output Third Order Intercept <u>2</u> / <u>4</u> /	OIP3		5	18		dBm
			6	15		
Power Supplies	144		1 2 2		00	
Quiescent supply current	Idd	INO SIGNAI AT KEIN	1, 2, 3		80	mA

TABLE I – ELECTRICAL PERFORMANCE CHARACTERISTICS

TABLE I NOTES:

 $1/T_A$ nom = +25 °C, T_A max = 85 °C, and T_A min = -40 °C unless otherwise noted, Vdd = +5 Vdc, Vgg2 = Open, Idd = 60 mA (*Adjust Vgg1 between -2 Vdc to -0 Vdc to achieve Idd* = 60 mA (*ypical.*)

2/ Parameter is part of device initial characterization which is only repeated after design and process changes or with subsequent wafer lots. Five (5) flight units are randomly selected to test this parameter.

3/ Input power sweep -5 to 14 dBm

4/ Two-Tone Output Power = 0 dBm per tone with 1 MHz spacing.

Test Requirements	Subgroups (in accordance with MIL-PRF-38535, Table III)
Interim Electrical Parameters	1
Final Electrical Parameters	1, 4 <u>1</u> / <u>2</u> /
Group A Test Requirements	1, 2, 3, 4, 5, 6
Group C end-point electrical parameters	1, 4 <u>2</u> /
Group D end-point electrical parameters	1,4

TABLE IIA – ELECTRICAL TEST REQUIREMENTS

Table IIA Notes:

<u>1</u>/ PDA applies to Table I subgroup 1 and Table IIB delta parameters. <u>2</u>/ See Table IIB for delta parameters

TABLE IIB – BURN-IN / LIFE TEST DELTA LIMITS 1/

Parameter	Symbol	Delta	Units
Gain <u>2</u> / <u>3</u> /	S21	±1.0	dB
Supply Current <u>2</u> / <u>4</u> /	Idd	±10	%

Table IIB Notes:

 $\begin{array}{l} 1/240 \text{ hour burn in and group C end point electrical parameters.} \\ 2/ Deltas are performed at room temperature T_A = +25 °C only. \\ 3/ Deltas apply with Vdd = +5 Vdc, Vgg2 = Open, Idd = 60 mA unless otherwise noted. \\ 4/ Deltas apply with Vdd = +5 Vdc, Vgg2 = Open, Vgg1 = -0.9 Vdc Typ. \end{array}$

5.0 Burn-In Life Test, and Radiation

- 5.1. Burn-In Test Circuit, Life Test Circuit
 - 5.1.1. The test conditions and circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1015 test condition B of MIL–STD-883.
 - 5.1.2.HTRB is not applicable for this drawing.

6.0 MIL-PRF-38535 QMLV Exceptions

The manufacturing flow described in the RF & MICROWAVE STANDARD SPACE LEVEL PRODUCTS PROGRAM is to be considered a part of this specification. The brochure describes standard QMLV exceptions for Aerospace products run at the ADI Chelmsford, MA facility.

6.1. Wafer Fabrication

Foundry information is available on request.

6.2. Group D

Group D-5 Salt Atmosphere testing is not being performed.

7.0 Application Notes

The circuit board used in the final application should be generated with proper RF circuit design techniques. Signal lines at the RF ports (RFIN & RFOUT) should have 50 Ohm impedence. Also, the package ground leads, and package bottom should be connected directly to the ground plane. The recommended circuit board material is Rogers 4350.

Application Circuit

Figure 3 – Typical application circuit for the ADH463-701LH250

8.0 Package Outline Dimensions

The LH250 package and outline dimensions can be found at <u>http://www.analog.com</u> or upon request.

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
ADH463-701LH250	–40 °C to +85 °C	12 Lead Ceramic Leadless Chip Carrier	LH250 (E-12-6)

Revision History				
Rev	Description of Change	Date		
А	Initial Product Release	4/20/23		
В	Update Table I	5/9/23		

© 2023 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective companies. Printed in the U.S.A. 05/23

www.analog.com

ASD0016629 Rev. B | Page 7 of 7