

Microprocessor-Compatible 12-Bit D/A Converter

AD667

1.0 **SCOPE**

This specification documents the detailed requirements for Analog Devices space qualified die including die qualification as described for Class K in MIL-PRF-38534, Appendix C, Table C-II except as modified herein.

The manufacturing flow described in the STANDARD DIE PRODUCTS PROGRAM brochure at http://milaero.analog.com/en/space/segment/ma.html is to be considered a part of this specification.

This data sheet specifically details the space grade version of this product. A more detailed operational description and a complete data sheet for commercial product grades can be found at www.analog.com/AD667

2.0 Part Number. The complete part number(s) of this specification follow:

Part Number Description
AD667-000C Microprocessor-Compatible 12- Bit D/A Converter

3.0 <u>Die Information</u>

3.1 Die Dimensions

Die Size	Die Thickness	Bond Pad Metalization
142 mil x 184 mil	19 mil ± 2 mil	Al/Cu

3.2 <u>Die Picture</u>

PACKAGE PIN	FUNCTION		
1	20V SPAN		
2	10V SPAN		
3	SUM JCT		
4	BIP OFF		
5	AGND		
6	VREF OUT		
7	VREF IN		
8	+VCC		
9	VOUT		
10	-VEE		
11	CS		
12	А3		
13	A2		
14	A1		
15	A0		
16	POWER GROUND		
17	DB0 LSB		
18	DB1		
19	DB2		
20	DB3		
21	DB4		
22	DB5		
23	DB6		
24	DB7		
25	DB8		
26	DB9		
27	DB10		
28	DB11 MSB		

Figure 1 - <u>Terminal connections</u>.

3.3 Absolute Maximum Ratings 1/

V _{CC} to power ground range	0V dc to +18V dc
V _{EE} to power ground range	0V dc to -18V dc
Digital inputs (pins 11-15, 17-28) to power ground	d range±0.3V dc
Reference in to reference ground	±12V dc
Bipolar offset to reference ground	±12V dc
10V span R to reference ground	±12V dc
20V span R to reference ground	±24V dc
Reference out, V _{OUT} (pins 6 and 9)	continuous short to power ground, momentary short to V _{CC}
Storage Temperature Range	65°C to +150°C
Junction Temperature (T _J)	+150°C
Ambient Operating Temperature Range	

Absolute Maximum Ratings Notes:

4.0 <u>Die Qualification</u>

In accordance with class-K version of MIL-PRF-38534, Appendix C, Table C-II, except as modified herein.

- (a) Qual Sample Size and Qual Acceptance Criteria 10/0
- (b) Qual Sample Package DIP
- (c) Pre-screen electrical test over temperature performed post-assembly prior to die qualification.

^{1/} Stresses above the absolute maximum rating may cause permanent damage to the device. Extended operation at the maximum levels may degrade performance and affect reliability.

AD667

Table I - Dice Electrical Characteristics						
Parameter	Symbol	Conditions <u>1/</u>	Limit Min	Limit Max	Units	
Resolution	RES		12		Bits	
Relative Accuracy	RA	All bits with positive errors on & All bits with negative error on.		±0.5	LSB	
Differential Nonlinearity	DNL	Major carry errors		±0.75	LSB	
Gain Error <u>2/</u>	AE	All bits on; All bits high		.20	%FSR	
Unipolar Offset Error	Vos	All bits off; All bits low		±2	LSB	
Bipolar Zero Error	B _{PZE}	MSB on, all other bits off		±0.1	%FSR	
Reference Output Voltage <u>3/</u>	V _{REF}	Bipolar mode, $V_S = \pm 11.4V$, 0.1 mA external load	$V_S = \pm 11.4V$, 9.9		V	
Davier County Daiostica Datis	PSRR -	All bits on; +11.4V≤ VCC ≤ +16.5V		10	ppm of	
Power Supply Rejection Ratio	POKK -	All bits on; -11.4V≥ VEE ≥ -16.5V			FSR/%	
Power Supply Current	lcc	$V_S = \pm 16.5 \text{ V, All bits on}$		12	mA	
	I _{EE}			25		
Digital Input High Voltage	V _{IH}		2		V	
Digital Input Low Voltage	VıL			0.8	V	
Digital Input High Current	I _{IH}	V _{IH} =5.5 V		10	μΑ	
Digital Input Low Current	I _{IL}	V _{IL} =0V		5	μΑ	

Table I Notes:

 V_{CC} = +15V, V_{EE} = -15V, 50Ω resistor pin 6 to pin 7 A_O, A₁, A₂, A₃, CS = Logic "0", V_{IH} = 2V, V_{IL} =0.8V, Unipolar configuration unless otherwise specifed. Unipolar configuration – Pins 1 and 2 to Pin 9, Pin 4 to Pin 5. Bipolar configuration – Pin 1 to Pin 9, 50Ω resistor Pin 4 to Pin 6.

Adjustable to 0. In subgroup 1, the reference output is loaded with 0.5mA nominal reference current, 1.0 mA bipolar offset current and 0.1 mA additional current. <u>2/</u> 3/

Parameter	Symbol	Table II - Electrical Characteristics for Qual Symbol Conditions 1/		Limit Min	Limit	Unit	
		_	groups		Max		
Resolution	RES			12		Bit	
Relative Accuracy	RA	All bits with positive errors on &	1		±0.5	LS	
,		All bits with negative error on.	2, 3		±0.75		
Differential Nonlinearity	DNL	Major carry errors	1		±0.75	LS	
2 merential resimileancy	DIVE	major carry cirors	2, 3		±1		
Gain Error <u>2/</u>	AE		1		0.2	%F:	
Gain Temperature Coefficient	TCA _E	All bits on; All bits high	2, 3		30	ppm	
Unipolar Offset Error	Vos		1		±2	LS	
Unipolar Offset Temperature Coefficient	TCVos	All bits off; All bits low	2, 3		±3	ppm	
Bipolar Zero Error <u>2/</u>	B _{PZE}		1		±0.14	%F	
B _{PZE} Temperature Coefficient	TCB _{PZE}	MSB on, all other bits off	2, 3		±12	ppm	
Reference Output Voltage <u>3/</u>	V _{REF}	Bipolar mode, $V_S = \pm 11.4V$, 0.1 mA external load	1, 2, 3	9.9	10.1	V	
Daver Cumply Dejection Detic	PSRR	All bits on; +11.4V≤ VCC ≤ +16.5V	1		10	ppm	
Power Supply Rejection Ratio		All bits on; -11.4V≥ V _{EE} ≥ -16.5V	1		10	FSR	
Davies Complet Comment	I _{CC}	$V_S = \pm 16.5 \text{ V, All bits on}$	1		12		
Power Supply Current	I _{EE}		1		25	m/	
Digital Input High Voltage	V _{IH}		1, 2, 3	2		٧	
Digital Input High Voltage	\/		1		0.8	V	
Digital input nigh voltage	V _{IL}	Γ	2, 3		0.7	v	
Digital Input High Voltage	Іін	V _{IH} =5.5 V	1		10		
Digital Input High Voltage	I _{IL}	V _{IL} =0V	1		5	μ/	

Table II Notes:

 $V_{CC} = +15 V, \ V_{EE} = -15 V, \ 50 \Omega \ resistor \ pin \ 6 \ to \ pin \ 7 \ A_0, \ A_1, \ A_2, \ A_3, \ CS = Logic \ "0", \ V_{IH} = 2.0 V, \ V_{IL} = 0.8 V, \ V_{IL} =$ 1/ Unipolar configuration unless otherwise specified. Unipolar configuration -Pins 1 and 2 to Pin 9, Pin 4 to Pin 5. Bipolar configuration – Pin 1 to Pin 9, 50Ω resistor Pin 4 to Pin 6. Adjustable to 0.

<u>2/</u> <u>3/</u> In subgroup 1, the reference output is loaded with 0.5mA nominal reference current, 1.0 mA bipolar offset current and 0.1 mA additional current. In subgroups 2 and 3, only the 0.5 mA reference input current is applied. The reference must be buffered to supply external loads at elevated temperatures.

AD667

Table III - Delta Parameter Table

Parameter	Symbol	Sub-	Post Burn In Limit		Post Life Test Limit		Life Test	Units
raiailletei	Symbol	groups	Min	Max	Min	Max	Delta	Offices
Input Offset Voltage	Vos	1		±3		±4	±1	LSB
Bipolar Zero Error	B _{PZE}	1		±0.19		±0.24	±0.05	%FS
Power Supply Current	lcc	1		13.2		14.4	1.2	mA
Power Supply Current	IEE	1		27.5		30	2.5	mA

5.0 <u>Life Test/Burn-In Information</u>

- 5.1 HTRB is not applicable for this drawing.
- 5.2 Burn-in is per MIL-STD-883 Method 1015 test condition B or C.
- 5.3 Steady state life test is per MIL-STD-883 Method 1005.

Rev	Description of Change	Date
Α	Initiate	9-Apr-02
В	Update 1.0 Scope description.	1 Aug. 2007
С	Update header/footer & add to 1.0 Scope description	Mar. 3, 2008
D	Add Junction Temperature (T _J)+150°C to 3.3 Absolute Max. Ratings	April 2, 2008
Е	Updated Section 4.0c note to indicate pre-screen temp testing being performed	5-JUN-2009
F	Update Fonts and sizes to ADI standard	22-Sept-2011
G	Correct pin assignment in section 3.2	08-MAR-2013