Supervisory and Sequencing Devices for AMD and Intel FPGAs

Modern FPGA designs leverage advance fabrication techniques, enabling smaller process geometries and lower core voltages. This trend, however, necessitate the use of multiple voltage rails to accommodate legacy I/O standards. To guarantee system stability and prevent unexpected behavior, each of these voltage rails requires dedicated supervision.

Analog Devices offers a comprehensive portfolio of voltage monitoring solutions, including simple supervisors and window supervisors. Our range spans from basic single-channel to feature-rich multi-voltage supervisors, boasting industry-leading accuracy (up to ±0.3% across temperatures).

The core and I/O voltage requirements for various FPGA families are presented in a clear and easy-to-reference table. Core voltage ranges typically span from 0.70 V to 1.2 V, while I/O voltage levels can vary between 1V and 3.3 V.

MAX16193 0.3%Accuracy Dual-Channel Supervisory Circuit

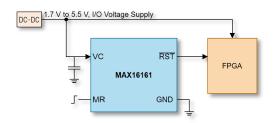
- ±0.3% Threshold Accuracy
- 0.6V to 0.9V IN1 Threshold Range
- 0.9V to 3.3V IN2 Threshold Range
- ±2% to ±5% UV/OV Monitoring Range
- Enables Functional Safety at System Level

MAX42500

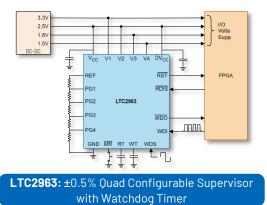
Four- to Seven-Input Industrial Power System Monitor Family

- IEC 61508 SIL 3 Certified
- Five Fixed-Voltage Monitoring Inputs
- Two Differential DVS Tracking-Voltage Monitoring Inputs with Remote Ground Sense
- Flexible Power-Sequencing
 Recording
- Simple or Challenge/Response Windowed Watchdog

Multi-voltage Supervisors for AMD & Intel FPGAs

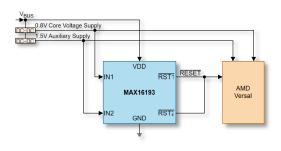

The tables provide data on the typical core voltages, auxiliary voltages, and I/O voltages for FPGA devices from AMD and Intel. These voltages are crucial for the optimal performance and stability of the FPGA devices, ensuring they operate within their specified parameters.

AMD & Intel FPGA Core and I/O Voltages


AMD								
AMD FPGA Family	Core Voltage (V)	Auxiliary Voltage (V)	I/O Voltage (V)					
Virtex UltraScale+	0.85, 0.72, 0.90	1.8	1.0, 1.2, 1.35, 1.5, 1.8, 2.5, 3.3					
Virtex UltraScale	0.95, 1	1.8	1.0, 1.2, 1.35, 1.5, 1.8, 2.5, 3.3					
Virtex 7	1, 0.90	1.8, 2.0	1.2, 1.35, 1.5, 1.8, 2.5, 3.3					
Kintex UltraScale+	0.85, 0.72, 0.90	1.8	1.0, 1.2, 1.35, 1.5, 1.8, 2.5, 3.3					
Kintex UltraScale	0.95, 0.90, 1.0	1.8	1.0, 1.2, 1.35, 1.5, 1.8, 2.5, 3.3					
Kintex 7	1, 0.90, 0.95	1.8	1.2, 1.35, 1.5, 1.8, 2.5, 3.3					
Artix UtraScale+	0.85, 0.72	1.8	1.0, 1.2, 1.35, 1.5, 1.8, 2.5, 3.3					
Artix 7	1.0, 0.95, 0.90	1.8	1.2, 1.35, 1.5, 1.8, 2.5, 3.3					
Spartan Ultrascale+	0.85, 0.72, 0.90	1.8	1.0, 1.2, 1.35, 1.5, 1.8, 2.5, 3.3					
Spartan 7	1, 0.95	1.8	1.2, 1.35, 1.5, 1.8, 2.5, 3.3					
		INTEL						
Intel FPGA Family	Core Voltage (V)	Auxiliary Voltage (V)	I/O Voltage (V)					
Agilex 7 F	0.70 - 0.90	-	1.2, 1.5					
Agilex 7 I	0.70 - 0.90	-	1.2, 1.5					
Stratix 10	0.8-0.94	-	1.2, 1.25, 1.35, 1.5, 1.8, 2.5, 3, 3.3					
Stratix V	0.85, 0.9	-	1.2, 1.25, 1.35, 1.5, 1.8, 2.5, 3.0					
Stratix IV	0.9	-	1.2, 1.5, 1.8, 2.5, 3.0					
Arria 10	0.9, 0.95	-	1.2, 1.25, 1.35, 1.5, 1.8, 2.5, 3.0					
Arria V GX	1.1, 1.15	-	1.2, 1.25, 1.35, 1.5, 1.8, 2.5, 3.0, 3.3					
Arria V GZ	0.85	-	1.2, 1.25, 1.35, 1.5, 1.8, 2.5, 3.0					
Arria V GZ Cyclone 10 GX	0.85 0.9	-	1.2, 1.25, 1.35, 1.5, 1.8, 2.5, 3.0 1.2, 1.25, 1.35, 1.5, 1.8, 2.5, 3.0					
		-						
Cyclone 10 GX	0.9		1.2, 1.25, 1.35, 1.5, 1.8, 2.5, 3.0					
Cyclone 10 GX Cyclone 10 LP	0.9 1.0, 1.2		1.2, 1.25, 1.35, 1.5, 1.8, 2.5, 3.0 1.2, 1.5, 1.8, 2.5, 3, 3.3					

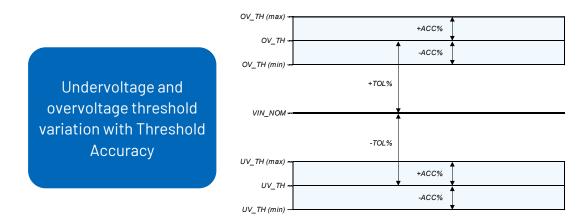
ADI Multi-voltage Supervisors with AMD & Intel FPGAs

Number of Voltages Monitored	Part Number	Monitoring Type	Voltages Monitored (V)	Accuracy (%)
1	MAX16132	Window	1.0 to 5.0	±1
1	MAX16161, MAX16162	Simple	1.7 to 4.85, 0.6 to 4.85	±1.5
2	MAX16193	Window	0.6 to 0.9, 0.9 to 3.3	±0.3
3	MAX16134	Window	5.0, 4.8, 4.5, 3.3, 3.0, 2.5, 1.8, 1.2, 1.16, 1.0	±1
4	LTC2962, LTC2963, LTC2964	Window	5.0, 3.3, 2.5, 1.8, 1.5, 1.2, 1.0, 0.5V	±0.5
4	MAX16135	Window	5.0, 4.8, 4.5, 3.3, 3.0, 2.5, 2.3, 1.8, 1.5, 1.36, 1.22, 1.2, 1.16, 1.0	±1
4	MAX16060	Simple	3.3, 2.5, 1.8, 0.62 (adj)	±1
6	LTC2936	Window	0.2 to 5.8 (Programmable)	±1
7	MAX42500	Window	0.1 to 5.5 (Programmable)	±1



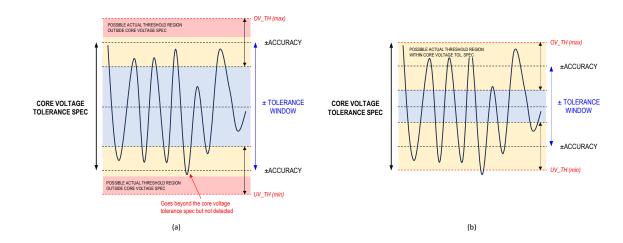
1.7<V_{DD}<5.5 MAX16135 IN1 Ð IN2 Trim Ē Four √oltage Rail FPGA INTERNAL LOGIC IN3 Ē IN4 Ē GND

MAX16135: ±1% Low-Voltage, Quad-Voltage Window Supervisor



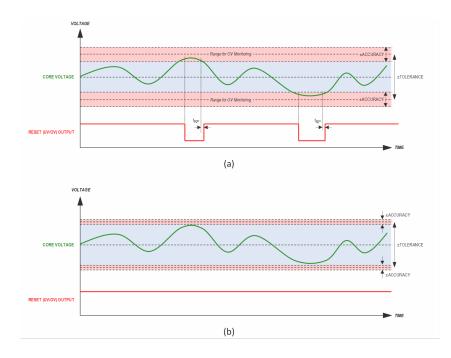
MAX16193: ±0.3% Accuracy Dual-Channel Window-Detector Supervisory Circuit

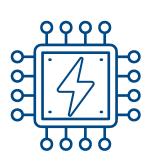
Window Voltage Supervisors


Window voltage supervisors are used to ensure FPGAs operate within a safe voltage specification range. They do this by having undervoltage (UV) and overvoltage (OV) thresholds and generating a reset output signal if it goes beyond the tolerance window to avoid system errors and prevent damage to your FPGAs and other processing devices. There are two main things to consider when choosing a window voltage supervisor: Tolerance and Threshold Accuracy.

Tolerance is the range around the nominal monitored value which sets the overvoltage and undervoltage thresholds. While, Threshold Accuracy, typically expressed in percentage, is the degree of the conformance of the actual to the target reset thresholds.

Selecting the Right Tolerance Window


Choosing a window supervisor with the same tolerance as the core voltage requirement can lead to malfunctions due to threshold accuracy. Setting the same tolerance with the operating requirement of the FPGA can trigger a reset output near the maximum overvoltage threshold OV_TH(max) and minimum undervoltage threshold UV_TH(min). The figure below illustrates tolerance setting (a) same with core voltage tolerance vs. (b) within the core voltage tolerance.



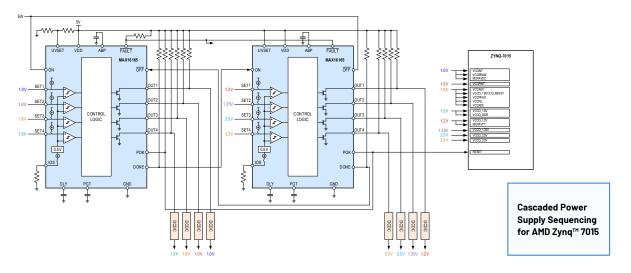
Impact of Threshold Accuracy

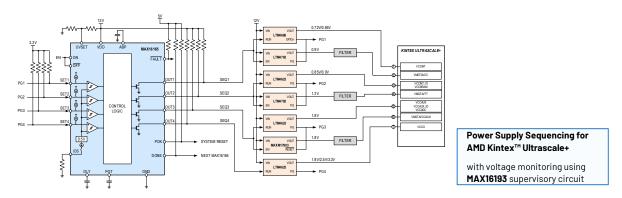
Compare two window voltage supervisors with different threshold accuracy monitoring the same core voltage supply rail. The supervisor with higher threshold accuracy will deviate less from the threshold limits in comparison to voltage supervisors with lower accuracy.

Examining the figure below, window supervisors with lower accuracy (a) creates a narrow power supply window since the reset output signal can assert anywhere within the UV and OV monitoring range. In applications with unreliable power supply regulation, this could pose a more sensitive system prone to oscillation. On the other hand, supervisors with high threshold accuracy (b) expands this range to provide a wider safe operating range for your power supply which improves the systems overall performance.

Power Supply Sequencing for AMD and Intel FPGAs

Modern FPGAs utilize multiple voltage rails for optimal performance. Defined power-up and power-down sequencing requirement is crucial for FPGA reliability. Improper sequencing introduce glitches, logic errors, and even permanent damage to sensitive FPGA components.

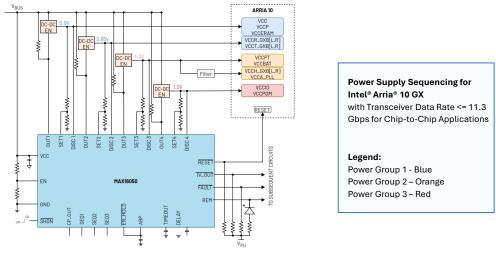

Analog Devices offers a comprehensive range of supervisory/sequencing circuits specifically designed to address the challenges of FPGA power management. These devices orchestrate the power-up and power-down sequence of various voltage rails, guaranteeing that each rail reaches its designated voltage level within its required ramp time and order. This power management solution minimizes inrush current, prevents voltage undershoot/overshoot conditions, and ultimately safeguards the integrity of your FPGA design

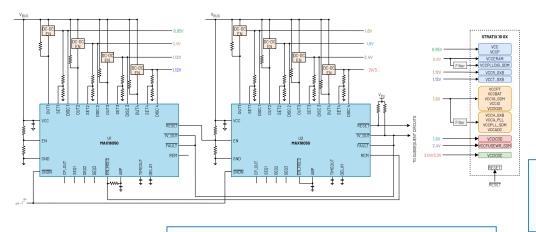

MAX16165

Highly Integrated, 4-Channel Sequencer and Supervisor (Widest Voltage Range Sequencer in Smallest Footprint with Integrated Supervisory)

- 2.7V to 16.0V Wide Operating Voltage
- Monitor Up to Five Voltages and Sequence Up to Four Voltages
- Power-Off in Reverse Order or Simultaneously
- Unlimited Daisy-Chain
- Capacitor-Adjustable Sequencing Delay and Power-Good Timeout

Power Supply Sequencing requiring 8 Power Regulators using **MAX16165**


MAX16165/MAX16166: Highly Integrated, 4-Channel Sequencer and Supervisor


MAX16050

Sequencer-Supervisor with Reverse-Sequencing Capability (Easy-to-Use, Four-/Five-Voltage, Power-Up/Power-Down Sequencer/Monitors)

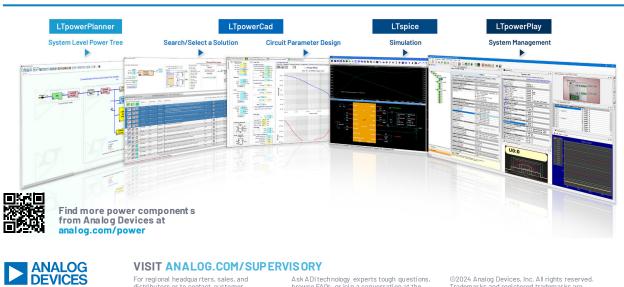
- Monitor Up to Five Voltages and Sequence Up to Four Voltages
- Pin-Selectable Sequencing Order
- Reverse-Sequencing Capability on Shutdown
- ±1.5% Accurate Overvoltage Monitoring with Independent Output
- Daisy-Chaining Capability to Communicate Across Multiple Devices

MAX16050/MAX16051: Voltage Monitors/Sequencer Circuits with Reverse-Sequencing Capability

Legend:

Power Group 1 - Blue Power Group 2 - Orange Power Group 3 - Red Power Group 4 - Green

Power Supply Sequencing for Intel® Stratix® 10 GX (only for the HF35 Package) with 15 Gbps < Transceiver Data Rate <= 28.3 Gbps


Power Supply Sequencing with MAX16050 using daisy chaining capability

Power Supply Sequencing

Number of Supplies Monitored	Part Number	Operating Vrange	Threshold Accuracy	Sequence	Programming Method	Package
1: cascadable	MAX16895	1.5 to 5.5V	1%	Up	R's, C's	6 uDFN
1: cascadable	MAX16052, MAX16053	2.25 to 28V	1.8%	Up	R's, C's	6 SOT23
2: cascadable	MAX6819, MAX6820	0.9 to 5.5V	2.6%	Up	R's, C's	6 SOT23
2	MAX16041	2.2 to 28V	2.7% and 1.5%	Up	R's, C's	16 TQFN
3	MAX16042					20 TQFN
4	MAX16043					24 TỌFN
4: cascadable	MAX16165, MAX16166	2.7 to 16V	0.80%	Up, Reverse- Power Down	R's, C's	20 WLP, 20L TQFN
	MAX16050	2.7 to 16V	1.5%	Up, Reverse- Power Down	R's, C's	28 TỌFN
5: cascadable	MAX16051					
6: cascadable	LTC2937	4.5 to 16.5V	<1.5%	Programmable	I2C, SMBus	28 QFN
8	ADM1168	3 to 16V	<1%	Programmable	SMBus	32 LQFP
8	ADM1169	3 to 16V	<1%	Programmable	SMBus	32 LQFP, 40 LFCSP
10: cascadable (max of 4)	ADM1260	3 to 16V	<1%	Programmable	SMBus	40 LFCSP
12: cascadable	ADM1166	3 to 16V	<1%	Programmable	SMBus	40 LFCSP, 48 TQFP
17: cascadable	ADM1266	3 to 15V	<1%	Programmable	PMBus	64 LFCSP

Design Tools

AHEAD OF WHAT'S POSSIBLE™

For regional headquarters, sales, and distributors or to contact customer service and technical support, visit analog.com/contact.

Ask ADI technology experts tough questions, browse FAQs, or join a conversation at the EngineerZo ne Online Support Community. Visitez.analog.com.

©2024 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners.