

MODULES FOR STEPPER MOTORS MODULES

Firmware Version V4.45

TMCL™ FIRMWARE MANUAL

+ + TMCM-351

+ +

TRINAMIC Motion Control GmbH & Co. KG
Hamburg, Germany

www.trinamic.com

3-Axis Stepper
Controller / Driver
2.8 A / 24 V
SPI, RS232, RS485, CAN, and USB
Encoder Interface

TMCM-351 TMCL Firmware V4.45 Manual (Rev. 1.06 / 2014-MAY-16) 2

www.trinamic.com

Table of Contents
1 Features ... 4
2 Putting the TMCM-351 into Operation .. 5

2.1 Starting up ... 5
2.2 Testing with a Simple TMCL Program .. 8

2.2.1 Testing without Encoder .. 8
2.2.2 Testing with Encoder .. 9

2.3 Operating the Module in Direct Mode .. 10
3 Overview .. 11
4 TMCL and TMCL-IDE .. 11

4.1 Binary command format .. 11
4.1.1 Checksum Calculation .. 12

4.2 Reply Format .. 12
4.2.1 Status Codes ... 13

4.3 Standalone Applications .. 13
4.4 TMCL Command Overview .. 14

4.4.1 TMCL Commands ... 14
4.4.2 Commands Listed According to Subject Area .. 15

4.5 The ASCII Interface ... 20
4.5.1 Command Line Format ... 20
4.5.2 Format of a Reply ... 20
4.5.3 Commands Used in ASCII Mode ... 20
4.5.4 Configuring the ASCII Interface .. 21

4.6 Commands ... 22
4.6.1 ROR (rotate right) .. 22
4.6.2 ROL (rotate left).. 23
4.6.3 MST (motor stop) .. 24
4.6.4 MVP (move to position) ... 25
4.6.5 SAP (set axis parameter) .. 27
4.6.6 GAP (get axis parameter) ... 28
4.6.7 STAP (store axis parameter) ... 29
4.6.8 RSAP (restore axis parameter) ... 30
4.6.9 SGP (set global parameter) .. 31
4.6.10 GGP (get global parameter) ... 32
4.6.11 STGP (store global parameter) ... 33
4.6.12 RSGP (restore global parameter) ... 34
4.6.13 RFS (reference search) ... 35
4.6.14 SIO (set output) .. 36
4.6.15 GIO (get input/output) ... 38
4.6.16 CALC (calculate) .. 41
4.6.17 COMP (compare) .. 42
4.6.18 JC (jump conditional) .. 43
4.6.19 JA (jump always) ... 44
4.6.20 CSUB (call subroutine) .. 45
4.6.21 RSUB (return from subroutine) .. 46
4.6.22 WAIT (wait for an event to occur) .. 47
4.6.23 STOP (stop TMCL program execution) ... 48
4.6.24 SAC (SPI bus access) ... 49
4.6.25 SCO (set coordinate) .. 50
4.6.26 GCO (get coordinate) ... 51
4.6.27 CCO (capture coordinate) ... 52
4.6.28 ACO (accu to coordinate) ... 53
4.6.29 CALCX (calculate using the X register) .. 54
4.6.30 AAP (accumulator to axis parameter) .. 55
4.6.31 AGP (accumulator to global parameter) .. 56
4.6.32 CLE (clear error flags) ... 57
4.6.33 VECT (set interrupt vector) ... 58
4.6.34 EI (enable interrupt) ... 59

TMCM-351 TMCL Firmware V4.45 Manual (Rev. 1.06 / 2014-MAY-16) 3

www.trinamic.com

4.6.35 DI (disable interrupt) .. 61
4.6.36 RETI (return from interrupt) ... 63
4.6.37 Customer Specific TMCL Command Extension (user function) .. 64
4.6.38 Request Target Position Reached Event... 65
4.6.39 BIN (return to binary mode) ... 65
4.6.40 TMCL Control Functions ... 66

5 Axis Parameters ... 67
6 Global Parameters ... 71

6.1 Bank 0 .. 71
6.2 Bank 1 .. 74
6.3 Bank 2 .. 74
6.4 Bank 3 .. 75

7 Hints and Tips .. 76
7.1 Reference Search ... 76
7.2 Changing the Prescaler Value of an Encoder ... 77
7.3 Stall Detection .. 78
7.4 Fixing Microstep Errors .. 78
7.5 Using the RS485 Interface .. 78

8 Life Support Policy ... 79
9 Revision History ... 80

9.1 Firmware Revision ... 80
9.2 Document Revision .. 80

10 References ... 80

TMCM-351 TMCL Firmware V4.45 Manual (Rev. 1.06 / 2014-MAY-16) 4

www.trinamic.com

1 Features
The TMCM-351 is a powerful three axes bipolar stepper motor controller/driver board with optional encoder interface
for all three axes and a large number of general purpose digital and analogue input/outputs. Several different serial
communication interfaces are available.

MAIN CHARACTERISTICS
Electrical data
- Supply voltage: +24V DC nominal (28.5V DC max.)
- Motor current: up to 2.8A RMS per axis (programmable)

Stepper motor data
- two phase bipolar stepper motors with up to 2.8A RMS coil current
- optional incremental encoder interface (a/b/n), accepts differential or single ended input signals

Interfaces
- 2 reference switch inputs per motor axis (6 altogether, internal pull-up resistors, +24V compatible)
- 8 general purpose inputs (+24V compatible)
- 8 general purpose outputs incl. two power outputs (all open-collector)
- 1 shutdown input (enable/disable driver stage in hardware)
- 4 dedicated analogue inputs (programmable 3.3V/10V input range)
- SPI™1 connector with three chip select signals for I/O extension
- RS232, RS485, CAN and USB serial communication interfaces

Features
- High-efficient operation, low power-dissipation (TMC249 stepper driver with external MOSFETs)
- Dynamic current control
- Integrated Protection
- On the fly alteration of motor parameters (e.g. position, velocity, acceleration)
- Motion profile calculation in real-time (TMC429 motion controller)
- Each axis individually and independently programmable
- Supports up to 64 microsteps per fullstep
- Integrated stallGuard™ for motor stall detection (e.g. elimination of end switches)
- Closed-loop operation with TMCL possible (when using the optional incremental encoder interface)

Software
- TMCL™ remote (direct mode) or stand-alone operation (memory for 2048 TMCL commands)
- Fully supported by TMCL-IDE (PC based integrated development environment)
- Optional CANopen firmware

1 SPI™ is a trademark of Motorola

TMCM-351 TMCL Firmware V4.45 Manual (Rev. 1.06 / 2014-MAY-16) 5

www.trinamic.com

2 Putting the TMCM-351 into Operation
Here you can find basic information for putting your module into operation. The text contains two simple examples
(with and without encoder) for a TMCL program and a short description of operating the module in direct mode.

THE THINGS YOU NEED
- TMCM-351
- Interface (RS232, RS485, USB or CAN) suitable to your TMCM-351 version with cables
- Nominal supply voltage +24V DC (+7…+28.5V DC) for your module
- Up to three stepper motors which fit to your module, for example QSH-5718 or QSH-6018.
- TMCL-IDE program and PC
- Encoder optional

PRECAUTIONS
- Do not connect or disconnect the motor while powered!
- Do not mix up connections or short-circuit pins.
- Avoid bounding I/O wires with motor power wires as this may cause noise picked up from the motor supply.
- Do not exceed the maximum power supply of 28.5V DC.
- Start with power supply OFF!

2.1 Starting up
1. Connect the motors

For the three motors there are two connector options:

- one detachable screw connector (for prototyping, smaller series)
- three separate crimp connectors (for higher volume series)

For this example we choose the screw connector. You will find further information about the crimp connectors
in the hardware manual.

Please connect the motors with the screw connector as follows:

1 12

Pin Label Description
1 Motor_0_B- Motor 0, coil B
2 Motor_0_B+ Motor 0, coil B
3 Motor_0_A- Motor 0, coil A
4 Motor_0_A+ Motor 0, coil A
5 Motor_1_B- Motor 1, coil B
6 Motor_1_B+ Motor 1, coil B
7 Motor_1_A- Motor 1, coil A
8 Motor_1_A+ Motor 1, coil A
9 Motor_2_B- Motor 2, coil B

10 Motor_2_B+ Motor 2, coil B
11 Motor_2_A- Motor 2, coil A
12 Motor_2_A+ Motor 2, coil A

TMCM-351 TMCL Firmware V4.45 Manual (Rev. 1.06 / 2014-MAY-16) 6

www.trinamic.com

2. Connect the encoder
For boards with assembled encoder option three connectors (one encoder interface connector per axis) will be
available. A standard 2.54mm pitch two row header is used for connecting an encoder. Differential and single ended
incremental encoders with/without zero/index channel are supported.

Please connect the encoders as follows:

- Single ended encoder: GND to pin 1 and/or 2

+5V to pin 7 and/or 8
A to pin 5
N to pin 3
B to pin 9

- Differential encoder: GND to pin 1 and/or 2
+5V to pin 7 and/or 8
A+ to pin 5, A- to pin 6
N+ to pin 3, N- to pin 4
B+ to pin 9, B- to pin 10

1

2

9

10

Pin Label Pin Label
1 GND 2 GND
3 Encoder_0/1/2_N+ 4 Encoder_0/1/2_N-
5 Encoder_0/1/2_A+ 6 Encoder_0/1/2_A-
7 +5V output 8 +5V output
9 Encoder_0/1/2_B+ 10 Encoder_0/1/2_B-

GND

B

A
N

+5V

Example for single ended encoder

3. Connect the interface
In this case we choose the USB interface for serial communication. A standard USB type B connector is used for
this purpose. USB is one out of four different interfaces available for communication with the board. You can
refer to the hardware manual for further information about the pinning of the other interfaces.

Please connect the USB interface with the enclosed cable as follows:

1

2

4

3

Pin Label Description

1 +5V Board is self-powered – just use to detect availability of
attached host system (e.g. PC)

2 USB- Differential USB bus
3 USB+ Differential USB bus
4 GND System / module ground

TMCM-351 TMCL Firmware V4.45 Manual (Rev. 1.06 / 2014-MAY-16) 7

www.trinamic.com

4. Connect the power supply:
Attention: Do not exceed the maximum power supply of 28.5 V DC!

Please connect the power supply as follows:

1 2

Pin Label Description
1 GND Module ground (power supply and signal ground)
2 VDD Power supply input, nom. +24V DC (+7 .. +28.5V DC)

5. Switch on the power supply

The green LED for power should glow now. This indicates that the on-board +5V supply is available.

If this does not occur, switch power OFF and check your connections as well as the power supply.

6. Start the TMCL-IDE software development environment
The TMCL-IDE is on hand on the TechLibCD and on www.trinamic.com.

Installing the TMCL-IDE:
- Make sure the COM port you intend to use is not blocked by another program.
- Open TMCL-IDE by clicking TMCL.exe.
- Choose Setup and Options and thereafter the Connection tab.

- Choose COM port and type with the parameters shown below (baud rate 9600). Click OK.

http://www.trinamic.com/

TMCM-351 TMCL Firmware V4.45 Manual (Rev. 1.06 / 2014-MAY-16) 8

www.trinamic.com

2.2 Testing with a Simple TMCL Program

2.2.1 Testing without Encoder

Assemble

Download Run

Stop

1. Click on Icon Assemble to convert the TMCL into machine code.
2. Then download the program to the TMCM-351 module via the icon Download.
3. Press icon Run. The desired program will be executed.
4. Click Stop button to stop the program.

//A simple example for using TMCL™ and TMCL-IDE

 ROL 0, 500 //Rotate motor 0 with speed 500
 WAIT TICKS, 0, 500
 MST 0
 ROR 1, 250 //Rotate motor 1 with 250
 WAIT TICKS, 0, 500
 MST 1

 SAP 4, 2, 500 //Set max. Velocity
 SAP 5, 2, 50 //Set max. Acceleration
Loop: MVP ABS, 2, 10000 //Move to Position 10000
 WAIT POS, 2, 0 //Wait until position reached
 MVP ABS, 2, -10000 //Move to Position -10000
 WAIT POS, 2, 0 //Wait until position reached
 JA Loop //Infinite Loop

TMCM-351 TMCL Firmware V4.45 Manual (Rev. 1.06 / 2014-MAY-16) 9

www.trinamic.com

2.2.2 Testing with Encoder
The motor rotates between two positions and stops if itis obstructed. The position is then corrected so that the motor
always reaches the correct target positions.
The encoder multiplier and the microstep resolution must be set so that the resolution of the encoder position and the
motor position match with each other.
The values here are for an encoder with 2000 steps per rotation and a motor with 200 full steps per rotation. The setting
of 64 microsteps then results in a motor resolution of 12800 microsteps per rotation and the encoder multiplier of
68672 (=>6.4) also results in an encoder resolution of 12800 steps per rotation.

// Encoder demo program for all modules with encoder interface

 MST 0 //Ensure that the motor is not moving
 CSUB WaitUntilStanding
 SAP 210, 0, 68672 //Encoder multiplier (6.4)
 SAP 209, 0, 0 //reset encoder position
 SAP 0, 0, 0 //reset the motor
 SAP 1, 0, 0 //position registers
 SAP 140, 0, 6 //Microstep resolution (64)
 SAP 5, 0, 50 //Acceleration
 SAP 212, 0, 250 //use automatic deviation check to stop

motor
 //when it is obstructed

Loop: MVP ABS, 0, 128000 //Rotate 10 revolutions
 CSUB WaitUntilRunning //Wait until the motor is running
 CSUB WaitUntilStanding //Wait until the motor has stopped
 GAP 8, 0 //Check if the end position has been reached
 JC NZ, PosReached1 //Jump if yes
 GAP 209, 0 //if not: copy encoder position to...
 AAP 0, 0 //...target position and...
 AAP 1, 0 //...actual position
 WAIT TICKS, 0, 50 //wait 0.5sec
 JA Loop //continue the move

PosReached1: //End position has been reached
 WAIT TICKS, 0, 200 //Wait 2sec
Rst2: MVP ABS, 0, 0 //Move 10 revolutions back
 CSUB WaitUntilRunning //Wait until the motor is running
 CSUB WaitUntilStanding //Wait until the motor has stopped
 GAP 8, 0 //Check if the end position has been reached
 JC NZ, PosReached2 //Jump if yes
 GAP 209, 0 //if not: copy encoder position to...
 AAP 0, 0 //...target position and...
 AAP 1, 0 //...actual position
 WAIT TICKS, 0, 50 //wait 0.5sec
 JA Rst2 //continue the move

PosReached2: //The other end position has been reached
 WAIT TICKS, 0, 200 //Wait 2sec
 JA Loop //Start again

WaitUntilRunning: //Subroutine that waits until the motor is

running
 GAP 3, 0
 COMP 0
 JC EQ, WaitUntilRunning
 RSUB

WaitUntilStanding: //Subroutine that waits until the motor has

stooped
 GAP 3, 0
 COMP 0
 JC NE, WaitUntilStanding
 RSUB

TMCM-351 TMCL Firmware V4.45 Manual (Rev. 1.06 / 2014-MAY-16) 10

www.trinamic.com

2.3 Operating the Module in Direct Mode
1. Start TMCL Direct Mode.

Direct Mode

2. If the communication is established the TMCM-351 is automatically detected. If the module is not detected,

please check all points above (cables, interface, power supply, COM port, baud rate).
3. Issue a command by choosing instruction, type (if necessary), motor, and value and click Execute to send it to

the module.

Examples:

- ROR rotate right, motor 0, value 500 -> Click Execute. The first motor is rotating now.
- MST motor stop, motor 0 -> Click Execute. The first motor stops now.

You will find a description of all TMCL commands in the following chapters.

TMCM-351 TMCL Firmware V4.45 Manual (Rev. 1.06 / 2014-MAY-16) 11

www.trinamic.com

3 Overview
As with most TRINAMIC modules the software running on the microprocessor of the TMCM-351 consists of two parts,
a boot loader and the firmware itself. Whereas the boot loader is installed during production and testing at TRINAMIC
and remains – normally – untouched throughout the whole lifetime, the firmware can be updated by the user. New
versions can be downloaded free of charge from the TRINAMIC website (http://www.trinamic.com).
The firmware shipped with this module is related to the standard TMCL firmware [TMCL] shipped with most of
TRINAMIC modules with regard to protocol and commands. Corresponding, the module is based on the TMC428/429
stepper motor controller and the TMC249 power driver and supports the standard TMCL with a special range of values.
Further you can order the module with encoder option, realized with the TMC423.

4 TMCL and TMCL-IDE
The TMCM-351module supports TMCL direct mode (binary commands or ASCII interface) and standalone TMCL program
execution. You can store up to 2048 TMCL instructions on it. In direct mode and most cases the TMCL communication
over RS485, RS232, USB and CAN follows a strict master/slave relationship. That is, a host computer (e.g. PC/PLC) acting
as the interface bus master will send a command to the module. The TMCL interpreter on it will then interpret this
command, do the initialization of the motion controller, read inputs and write outputs or whatever is necessary
according to the specified command. As soon as this step has been done, the module will send a reply back over
RS485/RS232/USB/CAN to the bus master. Only then should the master transfer the next command. Normally, the
module will just switch to transmission and occupy the bus for a reply, otherwise it will stay in receive mode. It will not
send any data over the interface without receiving a command first. This way, any collision on the bus will be avoided
when there are more than two nodes connected to a single bus.

The Trinamic Motion Control Language (TMCL) provides a set of structured motion control commands. Every motion
control command can be given by a host computer or can be stored in an EEPROM on the TMCM-351 to form programs
that run stand-alone on the module. For this purpose there are not only motion control commands but also commands
to control the program structure (like conditional jumps, compare and calculating).

Every command has a binary representation and a mnemonic. The binary format is used to send commands from the
host to a module in direct mode, whereas the mnemonic format is used for easy usage of the commands when
developing standalone TMCL applications using the TMCL-IDE (IDE means Integrated Development Environment).

There is also a set of configuration variables for the axis and for global parameters which allow individual configuration
of nearly every function of a module. This manual gives a detailed description of all TMCL commands and their usage.

4.1 Binary command format
Every command has a mnemonic and a binary representation. When commands are sent from a host to a module, the
binary format has to be used. Every command consists of a one-byte command field, a one-byte type field, a one-byte
motor/bank field and a four-byte value field. So the binary representation of a command always has seven bytes.
When a command is to be sent via RS232, RS485 or USB interface, it has to be enclosed by an address byte at the
beginning and a checksum byte at the end. In this case it consists of nine bytes.
This is different when communicating takes place via the CAN bus. Address and checksum are included in the CAN
standard and do not have to be supplied by the user.

The binary command format for RS232, RS485, and USB is as follows:

Bytes Meaning
1 Module address
1 Command number
1 Type number
1 Motor or Bank number
4 Value (MSB first!)
1 Checksum

- The checksum is calculated by adding up all the other bytes using an 8-bit addition.

http://www.trinamic.com/

TMCM-351 TMCL Firmware V4.45 Manual (Rev. 1.06 / 2014-MAY-16) 12

www.trinamic.com

- When using the CAN bus, just leave out the first byte (module address) and the last byte (checksum).

4.1.1 Checksum Calculation

As mentioned above, the checksum is calculated by adding up all bytes (including the module address byte) using 8-bit
addition. Here are two examples to show how to do this:

• in C:

unsigned char i, Checksum;
unsigned char Command[9];

//Set the “Command” array to the desired command
Checksum = Command[0];
for(i=1; i<8; i++)

 Checksum+=Command[i];

 Command[8]=Checksum; //insert checksum as last byte of the command

//Now, send it to the module

• in Delphi:
 var
 i, Checksum: byte;
 Command: array[0..8] of byte;

 //Set the “Command” array to the desired command

 //Calculate the Checksum:
 Checksum:=Command[0];
 for i:=1 to 7 do Checksum:=Checksum+Command[i];
 Command[8]:=Checksum;
 //Now, send the “Command” array (9 bytes) to the module

4.2 Reply Format
Every time a command has been sent to a module, the module sends a reply.

The reply format for RS485, RS232, and USB is as follows:

Bytes Meaning
1 Reply address
1 Module address
1 Status (e.g. 100 means no error)
1 Command number
4 Value (MSB first!)
1 Checksum

- The checksum is also calculated by adding up all the other bytes using an 8-bit addition.
- When using CAN bus, the first byte (reply address) and the last byte (checksum) are left out.
- Do not send the next command before you have received the reply!

TMCM-351 TMCL Firmware V4.45 Manual (Rev. 1.06 / 2014-MAY-16) 13

www.trinamic.com

4.2.1 Status Codes
The reply contains a status code. The status code can have one of the following values:

Code Meaning
100 Successfully executed, no error
101 Command loaded into TMCL

program EEPROM
1 Wrong checksum
2 Invalid command
3 Wrong type
4 Invalid value
5 Configuration EEPROM locked
6 Command not available

4.3 Standalone Applications
The module is equipped with a TMCL memory for storing TMCL applications. You can use TMCL-IDE for developing
standalone TMCL applications. You can download a program into the EEPROM and afterwards it will run on the module.
The TMCL-IDE contains an editor and the TMCL assembler where the commands can be entered using their mnemonic
format. They will be assembled automatically into their binary representations. Afterwards this code can be downloaded
into the module to be executed there.

TMCM-351 TMCL Firmware V4.45 Manual (Rev. 1.06 / 2014-MAY-16) 14

www.trinamic.com

4.4 TMCL Command Overview
In this section a short overview of the TMCL commands is given.

4.4.1 TMCL Commands
The following TMCL commands are currently supported:

Command Number Parameter Description
ROR 1 <motor number>, <velocity> Rotate right with specified velocity
ROL 2 <motor number>, <velocity> Rotate left with specified velocity
MST 3 <motor number> Stop motor movement
MVP 4 ABS|REL|COORD, <motor number>,

<position|offset>
Move to position (absolute or relative)

SAP 5 <parameter>, <motor number>, <value> Set axis parameter (motion control
specific settings)

GAP 6 <parameter>, <motor number> Get axis parameter (read out motion
control specific settings)

STAP 7 <parameter>, <motor number> Store axis parameter permanently (non
volatile)

RSAP 8 <parameter>, <motor number> Restore axis parameter
SGP 9 <parameter>, <bank number>, value Set global parameter (module specific

settings e.g. communication settings or
TMCL user variables)

GGP 10 <parameter>, <bank number> Get global parameter (read out module
specific settings e.g. communication
settings or TMCL user variables)

STGP 11 <parameter>, <bank number> Store global parameter (TMCL user
variables only)

RSGP 12 <parameter>, <bank number> Restore global parameter (TMCL user
variable only)

RFS 13 START|STOP|STATUS, <motor number> Reference search
SIO 14 <port number>, <bank number>, <value> Set digital output to specified value
GIO 15 <port number>, <bank number> Get value of analogue/digital input
CALC 19 <operation>, <value> Process accumulator & value
COMP 20 <value> Compare accumulator <-> value
JC 21 <condition>, <jump address> Jump conditional
JA 22 <jump address> Jump absolute
CSUB 23 <subroutine address> Call subroutine
RSUB 24 Return from subroutine
EI 25 <interrupt number> Enable interrupt
DI 26 <interrupt number> Disable interrupt
WAIT 27 <condition>, <motor number>, <ticks> Wait with further program execution
STOP 28 Stop program execution
SAC 29 <bus number>, <number of bites>, <send

data>
SPI bus access

SCO 30 <coordinate number>, <motor number>,
<position>

Set coordinate

GCO 31 <coordinate number>, <motor number> Get coordinate
CCO 32 <coordinate number>, <motor number> Capture coordinate
CALCX 33 <operation> Process accumulator & X-register
AAP 34 <parameter>, <motor number> Accumulator to axis parameter
AGP 35 <parameter>, <bank number> Accumulator to global parameter
VECT 37 <interrupt number>, <label> Set interrupt vector
RETI 38 Return from interrupt
ACO 39 <coordinate number>, <motor number> Accu to coordinate

TMCM-351 TMCL Firmware V4.45 Manual (Rev. 1.06 / 2014-MAY-16) 15

www.trinamic.com

4.4.2 Commands Listed According to Subject Area

4.4.2.1 Motion Commands
These commands control the motion of the motor. They are the most important commands and can be used in direct
mode or in standalone mode.

Mnemonic Command
number Meaning

ROL 2 Rotate left
ROR 1 Rotate right
MVP 4 Move to position
MST 3 Motor stop
RFS 13 Reference search
SCO 30 Store coordinate
CCO 32 Capture coordinate
GCO 31 Get coordinate

4.4.2.2 Parameter Commands
These commands are used to set, read and store axis parameters or global parameters. Axis parameters can be set
independently for the axis, whereas global parameters control the behavior of the module itself. These commands can
also be used in direct mode and in standalone mode.

Mnemonic Command
number Meaning

SAP 5 Set axis parameter
GAP 6 Get axis parameter
STAP 7 Store axis parameter into EEPROM
RSAP 8 Restore axis parameter from EEPROM
SGP 9 Set global parameter
GGP 10 Get global parameter
STGP 11 Store global parameter into EEPROM
RSGP 12 Restore global parameter from EEPROM

4.4.2.3 I/O Port Commands
These commands control the external I/O ports and can be used in direct mode and in standalone mode.

Mnemonic Command
number Meaning

SIO 14 Set output
GIO 15 Get input
SAC 29 Access to external SPI device

4.4.2.4 SPI Bus Access Command

Mnemonic Command
number

Meaning

SAC 29 SPI bus access

TMCM-351 TMCL Firmware V4.45 Manual (Rev. 1.06 / 2014-MAY-16) 16

www.trinamic.com

4.4.2.5 Control Commands
These commands are used to control the program flow (loops, conditions, jumps etc.). It does not make sense to use
them in direct mode. They are intended for standalone mode only.

Mnemonic Command
number Meaning

JA 22 Jump always
JC 21 Jump conditional
COMP 20 Compare accumulator with constant value
CLE 36 Clear error flags
CSUB 23 Call subroutine
RSUB 24 Return from subroutine
WAIT 27 Wait for a specified event
STOP 28 End of a TMCL program

4.4.2.6 Calculation Commands
These commands are intended to be used for calculations within TMCL applications. Although they could also be used
in direct mode it does not make much sense to do so.

Mnemonic Command

number
Meaning

CALC 19 Calculate using the accumulator and a constant value
CALCX 33 Calculate using the accumulator and the X register
AAP 34 Copy accumulator to an axis parameter
AGP 35 Copy accumulator to a global parameter
ACO 39 Copy accu to coordinate

For calculating purposes there is an accumulator (or accu or A register) and an X register. When executed in a TMCL
program (in stand-alone mode), all TMCL commands that read a value store the result in the accumulator. The X register
can be used as an additional memory when doing calculations. It can be loaded from the accumulator.
When a command that reads a value is executed in direct mode the accumulator will not be affected. This means that
while a TMCL program is running on the module (stand-alone mode), a host can still send commands like GAP, GGP or
GIO to the module (e.g. to query the actual position of the motor) without affecting the flow of the TMCL program
running on the module.

4.4.2.7 Interrupt Commands
Due to some customer requests, interrupt processing has been introduced in the TMCL firmware for ARM based
modules.

Mnemonic Command number Meaning
EI 25 Enable interrupt
DI 26 Disable interrupt
VECT 37 Set interrupt vector
RETI 38 Return from interrupt

4.4.2.7.1 Interrupt Types:
There are many different interrupts in TMCL, like timer interrupts, stop switch interrupts, position reached interrupts,
and input pin change interrupts. Each of these interrupts has its own interrupt vector. Each interrupt vector is identified
by its interrupt number. Please use the TMCL included file Interrupts.inc for symbolic constants of the interrupt
numbers.

TMCM-351 TMCL Firmware V4.45 Manual (Rev. 1.06 / 2014-MAY-16) 17

www.trinamic.com

4.4.2.7.2 Interrupt Processing:
When an interrupt occurs and this interrupt is enabled and a valid interrupt vector has been defined for that interrupt,
the normal TMCL program flow will be interrupted and the interrupt handling routine will be called. Before an interrupt
handling routine gets called, the context of the normal program will be saved automatically (i.e. accumulator register,
X register, TMCL flags).

There is no interrupt nesting, i.e. all other interrupts are disabled while an interrupt handling routine is being executed.

On return from an interrupt handling routine, the context of the normal program will automatically be restored and the
execution of the normal program will be continued.

4.4.2.7.3 Interrupt Vectors:
The following table shows all interrupt vectors for the three motors that can be used.

Interrupt number Interrupt type
0 Timer 0
1 Timer 1
2 Timer 2
3 Target position reached 0
4 Target position reached 1
5 Target position reached 2

15 stallGuard 0
16 stallGuard 1
17 stallGuard 2
21 Deviation 0
22 Deviation 1
23 Deviation 2
27 Left stop switch 0
28 Right stop switch 0
29 Left stop switch 1
30 Right stop switch 1
31 Left stop switch 2
32 Right stop switch 2
39 Input change 0
40 Input change 1
41 Input change 2
42 Input change 3
43 Input change 4
44 Input change 5
45 Input change 6
46 Input change 7

255 Global interrupts

4.4.2.7.4 Further Configuration of Interrupts
Some interrupts need further configuration (e.g. the timer interval of a timer interrupt). This can be done using SGP
commands with parameter bank 3 (SGP <type>, 3, <value>). Please refer to the SGP command for further information
about that.

TMCM-351 TMCL Firmware V4.45 Manual (Rev. 1.06 / 2014-MAY-16) 18

www.trinamic.com

4.4.2.7.5 Using Interrupts in TMCL
To use an interrupt the following things have to be done:

- Define an interrupt handling routine using the VECT command.
- If necessary, configure the interrupt using an SGP <type>, 3, <value> command.
- Enable the interrupt using an EI <interrupt> command.
- Globally enable interrupts using an EI 255 command.
- An interrupt handling routine must always end with a RETI command

The following example shows the use of a timer interrupt:

 VECT 0, Timer0Irq //define the interrupt vector
 SGP 0, 3, 1000 //configure the interrupt: set its period to 1000ms
 EI 0 //enable this interrupt
 EI 255 //globally switch on interrupt processing

//Main program: toggles output 3, using a WAIT command for the delay
Loop:
 SIO 3, 2, 1
 WAIT TICKS, 0, 50
 SIO 3, 2, 0
 WAIT TICKS, 0, 50
 JA Loop

//Here is the interrupt handling routine
Timer0Irq:
 GIO 0, 2 //check if OUT0 is high
 JC NZ, Out0Off //jump if not
 SIO 0, 2, 1 //switch OUT0 high
 RETI //end of interrupt
Out0Off:
 SIO 0, 2, 0 //switch OUT0 low
 RETI //end of interrupt

In the example above, the interrupt numbers are used directly. To make the program better readable use the provided
include file Interrupts.inc. This file defines symbolic constants for all interrupt numbers which can be used in all interrupt
commands. The beginning of the program above then looks like the following:

#include Interrupts.inc
 VECT TI_TIMER0, Timer0Irq
 SGP TI_TIMER0, 3, 1000
 EI TI_TIMER0
 EI TI_GLOBAL

Please also take a look at the other example programs.

4.4.2.8 ASCII Commands
Mnemonic Command number Meaning
- 139 Enter ASCII mode
BIN - Quit ASCII mode and return to binary mode. This command can only be

used in ASCII mode.

TMCM-351 TMCL Firmware V4.45 Manual (Rev. 1.06 / 2014-MAY-16) 19

www.trinamic.com

4.4.2.9 TMCL Control Commands

Instruction Description Type Mot/Bank Value
128 – stop application a running TMCL standalone

application is stopped
(don't care) (don't care) (don't care)

129 – run application TMCL execution is started (or
continued)

0 - run from
current address
1 - run from
specified address

(don't care) (don't care)

starting address

130 – step application only the next command of a TMCL
application is executed

(don't care) (don't care) (don't care)

131 – reset application the program counter is set to zero,
and the standalone application is
stopped (when running or
stepped)

(don't care) (don't care) (don't care)

132 – start download
 mode

target command execution is
stopped and all following
commands are transferred to the
TMCL memory

(don't care) (don't care) starting address of
the application

133 – quit download
 mode

target command execution is
resumed

(don't care) (don't care) (don't care)

134 – read TMCL
 memory

the specified program memory
location is read

(don't care) (don't care) <memory address>

135 – get application
 status

one of these values is returned:
0 – stop
1 – run
2 – step
3 – reset

(don't care) (don't care) (don't care)

136 – get firmware
 version

return the module type and
firmware revision either as a
string or in binary format

0 – string
1 – binary

(don’t care) (don’t care)

137 – restore factory
 settings

reset all settings stored in the
EEPROM to their factory defaults
This command does not send back
a reply.

(don’t care) (don’t care) must be 1234

139 – enter ASCII
 mode

Enter ASCII command line (don’t care) (don’t care) (don’t care)

TMCM-351 TMCL Firmware V4.45 Manual (Rev. 1.06 / 2014-MAY-16) 20

www.trinamic.com

4.5 The ASCII Interface
There is also an ASCII interface that can be used to communicate with the module and to send some commands as text
strings.

PROCEED AS FOLLOWS
- The ASCII command line interface is entered by sending the binary command 139 (enter ASCII mode).
- Afterwards the commands are entered as in the TMCL-IDE. Please note that only those commands, which can be

used in direct mode, also can be entered in ASCII mode.
- For leaving the ASCII mode and re-enter the binary mode enter the command BIN.

4.5.1 Command Line Format
As the first character, the address character has to be sent. The address character is A when the module address is 1, B
for modules with address 2 and so on. After the address character there may be spaces (but this is not necessary). Then,
send the command with its parameters. At the end of a command line a <CR> character has to be sent.

EXAMPLES FOR VALID COMMAND LINES
AMVP ABS, 1, 50000
A MVP ABS, 1, 50000
AROL 2, 500
A MST 1
ABIN

These command lines would address the module with address 1. To address e.g. module 3, use address character C
instead of A. The last command line shown above will make the module return to binary mode.

4.5.2 Format of a Reply
After executing the command the module sends back a reply in ASCII format. The reply consists of:
- the address character of the host (host address that can be set in the module)
- the address character of the module
- the status code as a decimal number
- the return value of the command as a decimal number
- a <CR> character

So, after sending AGAP 0, 1 the reply would be BA 100 –5000 if the actual position of axis 1 is –5000, the host address
is set to 2 and the module address is 1. The value 100 is the status code 100 that means command successfully executed.

4.5.3 Commands Used in ASCII Mode
The following commands can be used in ASCII mode: ROL, ROR, MST, MVP, SAP, GAP, STAP, RSAP, SGP, GGP, STGP,
RSGP, RFS, SIO, GIO, SCO, GCO, CCO, UF0, UF1, UF2, UF3, UF4, UF5, UF6, and UF7.

SPECIAL COMMANDS WHICH ARE ONLY AVAILABLE IN ASCII MODE
- BIN: This command quits ASCII mode and returns to binary TMCL mode.
- RUN: This command can be used to start a TMCL program in memory.
- STOP: Stops a running TMCL application.

TMCM-351 TMCL Firmware V4.45 Manual (Rev. 1.06 / 2014-MAY-16) 21

www.trinamic.com

4.5.4 Configuring the ASCII Interface
The module can be configured so that it starts up either in binary mode or in ASCII mode. Global parameter 67 is used
for this purpose (please see also chapter 6).

Bit 0 determines the startup mode: if this bit is set, the module starts up in ASCII mode, else it will start up in binary
mode (default).

Bit 4 and Bit 5 determine how the characters that are entered are echoed back. Normally, both bits are set to zero. In
this case every character that is entered is echoed back when the module is addressed. Characters can also be erased
using the backspace character (press the backspace key in a terminal program).

When bit 4 is set and bit 5 is clear the characters that are entered are not echoed back immediately but the entire line
will be echoed back after the <CR> character has been sent.

When bit 5 is set and bit 4 is clear there will be no echo, only the reply will be sent. This may be useful in RS485 systems.

TMCM-351 TMCL Firmware V4.45 Manual (Rev. 1.06 / 2014-MAY-16) 22

www.trinamic.com

4.6 Commands
The module specific commands are explained in more detail on the following pages. They are listed according to their
command number.

4.6.1 ROR (rotate right)
The motor will be instructed to rotate with a specified velocity in right direction (increasing the position counter).

Internal function: first, velocity mode is selected. Then, the velocity value is transferred to axis parameter #0 (target
velocity).

The module is based on the TMC429 stepper motor controller and the TMC249 power driver. This makes possible
choosing a velocity between 0 and 2047.

Related commands: ROL, MST, SAP, GAP

Mnemonic: ROR <motor>, <velocity>

Binary representation:

INSTRUCTION NO. TYPE MOT/BANK VALUE

1 don't care <motor>
0… 2

<velocity>
0… 2047

Reply in direct mode:

STATUS VALUE
100 – OK don't care

Example:

Rotate right motor 2, velocity = 350
Mnemonic: ROR 2, 350

Binary:
Byte Index 0 1 2 3 4 5 6 7
Function Target-

address
Instruction

Number
Type Motor/

Bank
Operand

Byte3
Operand

Byte2
Operand

Byte1
Operand

Byte0
Value (hex) $01 $01 $00 $02 $00 $00 $01 $5e

TMCM-351 TMCL Firmware V4.45 Manual (Rev. 1.06 / 2014-MAY-16) 23

www.trinamic.com

4.6.2 ROL (rotate left)
The motor will be instructed to rotate with a specified velocity (opposite direction compared to ROR, decreasing the
position counter).

Internal function: first, velocity mode is selected. Then, the velocity value is transferred to axis parameter #0 (target
velocity).

The module is based on the TMC429 stepper motor controller and the TMC249 power driver. This makes possible
choosing a velocity between 0 and 2047.

Related commands: ROR, MST, SAP, GAP

Mnemonic: ROL <motor>, <velocity>

Binary representation:

INSTRUCTION NO. TYPE MOT/BANK VALUE

2 don't care <motor>
0… 2

<velocity>
0… 2047

Reply in direct mode:

STATUS VALUE
100 – OK don't care

Example:

Rotate left motor 0, velocity = 1200
Mnemonic: ROL 0, 1200

Binary:
Byte Index 0 1 2 3 4 5 6 7
Function Target-

address
Instruction

Number
Type Motor/

Bank
Operand

Byte3
Operand

Byte2
Operand

Byte1
Operand

Byte0
Value (hex) $01 $02 $00 $00 $00 $00 $04 $b0

TMCM-351 TMCL Firmware V4.45 Manual (Rev. 1.06 / 2014-MAY-16) 24

www.trinamic.com

4.6.3 MST (motor stop)
The motor will be instructed to stop.

Internal function: the axis parameter target velocity is set to zero.

Related commands: ROL, ROR, SAP, GAP

Mnemonic: MST <motor>

Binary representation:

INSTRUCTION NO. TYPE MOT/BANK VALUE

3 don’t care <motor>
0… 2 don’t care

Reply in direct mode:

STATUS VALUE
100 – OK don’t care

Example:

Stop motor 0
Mnemonic: MST 0

Binary:
Byte Index 0 1 2 3 4 5 6 7
Function Target-

address
Instruction

Number
Type Motor/

Bank
Operand

Byte3
Operand

Byte2
Operand

Byte1
Operand

Byte0
Value (hex) $01 $03 $00 $00 $00 $00 $00 $00

TMCM-351 TMCL Firmware V4.45 Manual (Rev. 1.06 / 2014-MAY-16) 25

www.trinamic.com

4.6.4 MVP (move to position)
With this command the motor will be instructed to move to a specified relative or absolute position or a pre-
programmed coordinate. It will use the acceleration/deceleration ramp and the positioning speed programmed into
the unit. This command is non-blocking – that is, a reply will be sent immediately after command interpretation and
initialization of the motion controller. Further commands may follow without waiting for the motor reaching its end
position. The maximum velocity and acceleration are defined by axis parameters 4 and 5.

The range of the MVP command is 32 bit signed (−2.147.483.648… +2.147.483.647). Positioning can be interrupted
using MST, ROL or ROR commands.

THREE OPERATION TYPES ARE AVAILABLE:
- Moving to an absolute position in the range from −2.147.483.648… +2.147.483.647 (-231… 231-1).
- Starting a relative movement by means of an offset to the actual position. In this case, the new resulting

position value must not exceed the above mentioned limits, too.
- Moving the motor to a (previously stored) coordinate (refer to SCO for details).

Please note, that the distance between the actual position and the new one should not be more than 2.147.483.647
(231-1) microsteps. Otherwise the motor will run in the opposite direction in order to take the shorter distance.

Internal function: A new position value is transferred to the axis parameter #2 (target position).

Related commands: SAP, GAP, SCO, CCO, GCO, MST, ACO

Mnemonic: MVP <ABS|REL|COORD>, <motor>, <position|offset|coordinate number>

Binary representation:

INSTRUCTION NO. TYPE MOT/BANK VALUE

4

0 ABS – absolute
<motor>

0… 2

<position>
1 REL – relative <offset>

2 COORD – coordinate <coordinate number>
 0… 20

Reply in direct mode:

STATUS VALUE
100 – OK don’t care

Example:

Move motor 0 to (absolute) position 90000
Mnemonic: MVP ABS, 0, 9000

Binary:
Byte Index 0 1 2 3 4 5 6 7
Function Target-

address
Instruction

Number
Type Motor/

Bank
Operand

Byte3
Operand

Byte2
Operand

Byte1
Operand

Byte0
Value (hex) $01 $04 $00 $00 $00 $01 $5f $90

Example:

Move motor 0 from current position 1000 steps backward (move relative –1000)
Mnemonic: MVP REL, 0, -1000

Binary:
Byte Index 0 1 2 3 4 5 6 7
Function Target-

address
Instruction

Number
Type Motor/

Bank
Operand

Byte3
Operand

Byte2
Operand

Byte1
Operand

Byte0
Value (hex) $01 $04 $01 $00 $ff $ff $fc $18

Example:

Move motor 0 to previously stored coordinate #8

TMCM-351 TMCL Firmware V4.45 Manual (Rev. 1.06 / 2014-MAY-16) 26

www.trinamic.com

Mnemonic: MVP COORD, 0, 8
Binary:
Byte Index 0 1 2 3 4 5 6 7
Function Target-

address
Instruction

Number
Type Motor/

Bank
Operand

Byte3
Operand

Byte2
Operand

Byte1
Operand

Byte0
Value (hex) $01 $04 $02 $00 $00 $00 $00 $08

TMCM-351 TMCL Firmware V4.45 Manual (Rev. 1.06 / 2014-MAY-16) 27

www.trinamic.com

4.6.5 SAP (set axis parameter)
With this command most of the motion control parameters can be specified. The settings will be stored in SRAM and
therefore are volatile. That is, information will be lost after power off.

Please use command STAP (store axis parameter) in order to store any setting permanently.

Internal function: the parameter format is converted ignoring leading zeros (or ones for negative values). The parameter
is transferred to the correct position in the appropriate device.

Related commands: GAP, STAP, RSAP, AAP

Mnemonic: SAP <parameter number>, <motor>, <value>

Binary representation:

INSTRUCTION NO. TYPE MOT/BANK VALUE

5 <parameter number> <motor>
0… 2 <value>

Reply in direct mode:

STATUS VALUE
100 – OK don’t care

For a table with parameters and values which can be used together with this command please refer to chapter 5.

Example:

Set the absolute maximum current of motor 0 to 1.4 A

Because of the current unit 𝐼𝐼𝑅𝑅𝑅𝑅𝑅𝑅 =< 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 >× 2.8𝐴𝐴

255
 the 200mA setting has the <value> 128 (value range for

current setting: 0… 255). The value for current setting has to be calculated before using this special SAP
command.

Mnemonic: SAP 6, 0, 128

Binary:
Byte Index 0 1 2 3 4 5 6 7
Function Target-

address
Instruction

Number
Type Motor/

Bank
Operand

Byte3
Operand

Byte2
Operand

Byte1
Operand

Byte0
Value (hex) $01 $05 $06 $00 $00 $00 $00 $12

TMCM-351 TMCL Firmware V4.45 Manual (Rev. 1.06 / 2014-MAY-16) 28

www.trinamic.com

4.6.6 GAP (get axis parameter)
Most parameters of the TMCM-351 can be adjusted individually for the axis. With this parameter they can be read out.
In standalone mode the requested value is also transferred to the accumulator register for further processing purposes
(such as conditioned jumps). In direct mode the value read is only output in the value field of the reply (without affecting
the accumulator).

Internal function: the parameter is read out of the correct position in the appropriate device. The parameter format is
converted adding leading zeros (or ones for negative values).

Related commands: SAP, STAP, AAP, RSAP

Mnemonic: GAP <parameter number>, <motor>

Binary representation:

INSTRUCTION NO. TYPE MOT/BANK VALUE

6 <parameter number> <motor>
0… 2 don’t care

Reply in direct mode:

STATUS VALUE
100 – OK don’t care

For a table with parameters and values which can be used together with this command please refer to chapter 5.

Example:

Get the maximum current of motor 1
Mnemonic: GAP 6, 1

Binary:
Byte Index 0 1 2 3 4 5 6 7
Function Target-

address
Instruction

Number
Type Motor/

Bank
Operand

Byte3
Operand

Byte2
Operand

Byte1
Operand

Byte0
Value (hex) $01 $06 $06 $01 $00 $00 $00 $00

Reply:
Byte Index 0 1 2 3 4 5 6 7
Function Host-

address
Target-
address

Status Instruction Operand
Byte3

Operand
Byte2

Operand
Byte1

Operand
Byte0

Value (hex) $02 $01 $64 $06 $00 $00 $02 $80

TMCM-351 TMCL Firmware V4.45 Manual (Rev. 1.06 / 2014-MAY-16) 29

www.trinamic.com

4.6.7 STAP (store axis parameter)
An axis parameter previously set with a Set Axis Parameter command (SAP) will be stored permanent. Most parameters
are automatically restored after power up.

Internal function: an axis parameter value stored in SRAM will be transferred to EEPROM and loaded from EEPORM
after next power up.

Related commands: SAP, RSAP, GAP, AAP

Mnemonic: STAP <parameter number>, <motor>

Binary representation:

INSTRUCTION NO. TYPE MOT/BANK VALUE

7 <parameter number> <motor>
0… 2 don’t care*

 * the value operand of this function has no effect. Instead, the currently used value (e.g. selected by SAP) is saved

Reply in direct mode:

STATUS VALUE
100 – OK don’t care

For a table with parameters and values which can be used together with this command please refer to chapter 5.
The STAP command will not have any effect when the configuration EEPROM is locked (refer to 6). In direct mode, the
error code 5 will be returned in this case.

Example:

Store the maximum speed of motor 0
Mnemonic: STAP 4, 0

Binary:
Byte Index 0 1 2 3 4 5 6 7
Function Target-

address
Instruction

Number
Type Motor/

Bank
Operand

Byte3
Operand

Byte2
Operand

Byte1
Operand

Byte0
Value (hex) $01 $07 $04 $00 $00 $00 $00 $00

TMCM-351 TMCL Firmware V4.45 Manual (Rev. 1.06 / 2014-MAY-16) 30

www.trinamic.com

4.6.8 RSAP (restore axis parameter)
For all configuration-related axis parameters non-volatile memory locations are provided. By default, most parameters
are automatically restored after power up. A single parameter that has been changed before can be reset by this
instruction also.

Internal function: the specified parameter is copied from the configuration EEPROM memory to its RAM location.

Relate commands: SAP, STAP, GAP, and AAP

Mnemonic: RSAP <parameter number>, <motor>

Binary representation:

INSTRUCTION NO. TYPE MOT/BANK VALUE

8 <parameter number> <motor>
0… 2 don’t care

Reply structure in direct mode:

STATUS VALUE
100 – OK don’t care

For a table with parameters and values which can be used together with this command please refer to chapter 5.

Example:

Restore the maximum current of motor 3
Mnemonic: RSAP 6, 0

Binary:
Byte Index 0 1 2 3 4 5 6 7
Function Target-

address
Instruction

Number Type Motor/
Bank

Operand
Byte3

Operand
Byte2

Operand
Byte1

Operand
Byte0

Value (hex) $01 $08 $06 $03 $00 $00 $00 $00

TMCM-351 TMCL Firmware V4.45 Manual (Rev. 1.06 / 2014-MAY-16) 31

www.trinamic.com

4.6.9 SGP (set global parameter)
With this command most of the module specific parameters not directly related to motion control can be specified and
the TMCL user variables can be changed. Global parameters are related to the host interface, peripherals or application
specific variables. The different groups of these parameters are organized in banks to allow a larger total number for
future products. Currently, only bank 0 and 1 are used for global parameters, and bank 2 is used for user variables. Bank
3 is used for interrupt configuration.

All module settings will automatically be stored non-volatile (internal EEPROM of the processor). The TMCL user
variables will not be stored in the EEPROM automatically, but this can be done by using STGP commands.
For a table with parameters and bank numbers which can be used together with this command please refer to chapter
6.

Internal function: the parameter format is converted ignoring leading zeros (or ones for negative values). The parameter
is transferred to the correct position in the appropriate (on board) device.

Related commands: GGP, STGP, RSGP, AGP

Mnemonic: SGP <parameter number>, <bank number>, <value>

Binary representation:

INSTRUCTION NO. TYPE MOT/BANK VALUE
9 <parameter number> <bank number> <value>

Reply in direct mode:

STATUS VALUE
100 – OK don’t care

Example:

Set the serial address of the target device to 3
Mnemonic: SGP 66, 0, 3

Binary:
Byte Index 0 1 2 3 4 5 6 7
Function Target-

address
Instruction

Number Type Motor/
Bank

Operand
Byte3

Operand
Byte2

Operand
Byte1

Operand
Byte0

Value (hex) $01 $09 $42 $00 $00 $00 $00 $03

TMCM-351 TMCL Firmware V4.45 Manual (Rev. 1.06 / 2014-MAY-16) 32

www.trinamic.com

4.6.10 GGP (get global parameter)
All global parameters can be read with this function. Global parameters are related to the host interface, peripherals or
application specific variables. The different groups of these parameters are organized in banks to allow a larger total
number for future products. Currently, only bank 0 and 1 are used for global parameters, and bank 2 is used for user
variables. Bank 3 is used for interrupt configuration.

For a table with parameters and bank numbers which can be used together with this command please refer to chapter
6.

Internal function: the parameter is read out of the correct position in the appropriate device. The parameter format is
converted adding leading zeros (or ones for negative values).

Related commands: SGP, STGP, RSGP, AGP

Mnemonic: GGP <parameter number>, <bank number>

Binary representation:

INSTRUCTION NO. TYPE MOT/BANK VALUE
10 <parameter number> <bank number> don’t care

Reply in direct mode:

STATUS VALUE
100 – OK don’t care

Example:

Get the serial address of the target device
Mnemonic: GGP 66, 0

Binary:
Byte Index 0 1 2 3 4 5 6 7
Function Target-

address
Instruction

Number
Type Motor/

Bank
Operand

Byte3
Operand

Byte2
Operand

Byte1
Operand

Byte0
Value (hex) $01 $0a $42 $00 $00 $00 $00 $00

Reply:
Byte Index 0 1 2 3 4 5 6 7
Function Host-

address
Target-
address

Status Instruction Operand
Byte3

Operand
Byte2

Operand
Byte1

Operand
Byte0

Value (hex) $02 $01 $64 $0a $00 $00 $00 $01

 Status = no error, value = 1

TMCM-351 TMCL Firmware V4.45 Manual (Rev. 1.06 / 2014-MAY-16) 33

www.trinamic.com

4.6.11 STGP (store global parameter)
This command is used to store TMCL user variables permanently in the EEPROM of the module. Some global parameters
are located in RAM memory, so without storing modifications are lost at power down. This instruction enables enduring
storing. Most parameters are automatically restored after power up.

For a table with parameters and bank numbers which can be used together with this command please refer to chapter
6.

Internal function: the specified parameter is copied from its RAM location to the configuration EEPROM.

Related commands: SGP, GGP, RSGP, AGP

Mnemonic: STGP <parameter number>, <bank number>

Binary representation:

INSTRUCTION NO. TYPE MOT/BANK VALUE
11 <parameter number> <bank number> don’t care

Reply in direct mode:

STATUS VALUE
100 – OK don’t care

Example:

Store the user variable #42
Mnemonic: STGP 42, 2

Binary:
Byte Index 0 1 2 3 4 5 6 7
Function Target-

address
Instruction

Number
Type Motor/

Bank
Operand

Byte3
Operand

Byte2
Operand

Byte1
Operand

Byte0
Value (hex) $01 $0b $2a $02 $00 $00 $00 $00

TMCM-351 TMCL Firmware V4.45 Manual (Rev. 1.06 / 2014-MAY-16) 34

www.trinamic.com

4.6.12 RSGP (restore global parameter)
With this command the contents of a TMCL user variable can be restored from the EEPROM. For all configuration-related
axis parameters, non-volatile memory locations are provided. By default, most parameters are automatically restored
after power up. A single parameter that has been changed before can be reset by this instruction.

For a table with parameters and bank numbers which can be used together with this command please refer to chapter
6.

Internal function: The specified parameter is copied from the configuration EEPROM memory to its RAM location.

Relate commands: SGP, STGP, GGP, and AGP

Mnemonic: RSGP <parameter number>, <bank number>

Binary representation:

INSTRUCTION NO. TYPE MOT/BANK VALUE
12 <parameter number> <bank number> don’t care

Reply structure in direct mode:

STATUS VALUE
100 – OK don’t care

Example:

Restore the user variable #42
Mnemonic: RSGP 42, 2

Binary:
Byte Index 0 1 2 3 4 5 6 7
Function Target-

address
Instruction

Number
Type Motor/

Bank
Operand

Byte3
Operand

Byte2
Operand

Byte1
Operand

Byte0
Value (hex) $01 $0c $2a $02 $00 $00 $00 $00

TMCM-351 TMCL Firmware V4.45 Manual (Rev. 1.06 / 2014-MAY-16) 35

www.trinamic.com

4.6.13 RFS (reference search)
The TMCM-351 module has a built-in reference search algorithm which can be used. The reference search algorithm
provides switching point calibration and three switch modes. The status of the reference search can also be queried to
see if it has already finished. (In a TMCL program it is better to use the WAIT command to wait for the end of a reference
search.) Please see the appropriate parameters in the axis parameter table to configure the reference search algorithm
to meet your needs. The reference search can be started, stopped, and the actual status of the reference search can be
checked.

Internal function: the reference search is implemented as a state machine, so interaction is possible during execution.

Related commands: WAIT

Mnemonic: RFS <START|STOP|STATUS>, <motor>

Binary representation:

INSTRUCTION NO. TYPE MOT/BANK VALUE

13
0 START – start ref. search
1 STOP – abort ref. search
2 STATUS – get status

<motor>
0… 2 see below

Reply in direct mode:

When using type 0 (START) or 1 (STOP):

STATUS VALUE
100 – OK don’t care

When using type 2 (STATUS):

STATUS VALUE
100 – OK 0 no ref. search

active
other values ref. search active

Example:

Start reference search of motor 0
Mnemonic: RFS START, 0

Binary:
Byte Index 0 1 2 3 4 5 6 7
Function Target-

address
Instruction

Number
Type Motor/

Bank
Operand

Byte3
Operand

Byte2
Operand

Byte1
Operand

Byte0
Value (hex) $01 $0d $00 $00 $00 $00 $00 $00

With this module it is possible to use stall detection instead of a reference search.

TMCM-351 TMCL Firmware V4.45 Manual (Rev. 1.06 / 2014-MAY-16) 36

www.trinamic.com

4.6.14 SIO (set output)
This command can be used as follows:

- SIO sets the status of the general digital output either to low (0) or to high (1). Bank 2 is used for this purpose.
- SIO is also used to switch the pull-up resistors for all digital inputs on and off. Bank 0 is used for this purpose.

Related commands: GIO, WAIT

Mnemonic: SIO <port number>, <bank number>, <value>

Binary representation:

INSTRUCTION NO. TYPE MOT/BANK VALUE

14 <port number> <bank number>
2

<value>
0/1

Reply structure:

STATUS VALUE
100 – OK don’t care

Example:

Set OUT_7 to high (bank 2, output 7)
Mnemonic: SIO 7, 2, 1

Binary:
Byte Index 0 1 2 3 4 5 6 7
Function Target-

address
Instruction

Number
Type Motor/

Bank
Operand

Byte3
Operand

Byte2
Operand

Byte1
Operand

Byte0
Value (hex) $01 $0e $07 $02 $00 $00 $00 $01

CONNECTORS

Connector 1

:

Connector 2

Connector 3
Figure 4.1 Connectors of TMCM-351

TMCM-351 TMCL Firmware V4.45 Manual (Rev. 1.06 / 2014-MAY-16) 37

www.trinamic.com

I/O PORTS USED FOR SIO AND COMMAND

ADDRESSING ALL SIX OUTPUT LINES WITH ONE SIO COMMAND:
Proceed as follows:

- Set the type parameter to 255 and the bank parameter to 2.
- The value parameter must then be set to a value between 0…255, where every bit represents one output line.
- Furthermore, the value can also be set to -1. In this special case, the contents of the lower 8 bits of the

accumulator are copied to the eight output pins.

Example:
Set all output pins high.
Mnemonic: SIO 255, 2, 255

THE FOLLOWING PROGRAM WILL SHOW THE STATES OF THE EIGHT INPUT LINES ON THE OUTPUT LINES:
Loop: GIO 255, 0

SIO 255, 2,-1
 JA Loop

ADJUSTING THE ANALOGUE INPUT:
It is possible to adjust the analogue input with the following commands:

SIO 8, 0, 0 for 3,3V input range
SIO 8, 0, 1 for 10V input range

COMMAND FOR SWITCHING THE PULL-UP RESISTORS FOR ADDITIONAL DIGITAL INPUTS
SIO can be used to switch the pull-up resistors for all digital inputs on and off. Bank 0 is used for this purpose. Every pull-
up resistor can be switched individually by setting the related bit using the bitmask.

Pin (connector 3) Input Bit Command Range
11 IN_0 0

SIO 0, 0,<bitmask> 0… 255

12 IN_1 1
13 IN_2 2
14 IN_3 3
15 IN_4 4
16 IN_5 5
17 ADIN_0 6
18 ADIN_1 7

1

220

19

Pin I/O port Command Range
1 OUT_0 SIO 0, <bank number>, 1/0 1/0
2 OUT_1 SIO 1, <bank number>, 1/0 1/0
3 OUT_2 SIO 2, <bank number>, 1/0 1/0
4 OUT_3 SIO 3, <bank number>, 1/0 1/0
5 OUT_4 SIO 4, <bank number>, 1/0 1/0
6 OUT_5 SIO 5, <bank number>, 1/0 1/0
7 OUT_6 SIO 6, <bank number>, 1/0 1/0
8 OUT_7 SIO 7, <bank number>, 1/0 1/0

TMCM-351 TMCL Firmware V4.45 Manual (Rev. 1.06 / 2014-MAY-16) 38

www.trinamic.com

4.6.15 GIO (get input/output)
With this command the status of the two available general purpose inputs of the module can be read out. The function
reads a digital or analogue input port. Digital lines will read 0 and 1, while the ADC channels deliver their 10 bit result
in the range of 0… 1023.

GIO IN STANDALONE MODE
In standalone mode the requested value is copied to the accumulator (accu) for further processing purposes such as
conditioned jumps.

GIO IN DIRECT MODE
In direct mode the value is only output in the value field of the reply, without affecting the accumulator. The actual
status of a digital output line can also be read.

Internal function: The specified line is read.

Related commands: SIO, WAIT

Mnemonic: GIO <port number>, <bank number>

Binary representation:

INSTRUCTION NO. TYPE MOT/BANK VALUE
15 <port number> <bank number> don’t care

Reply in direct mode:

STATUS VALUE
100 – OK <status of the port>

Example:

Get the analogue value of ADC channel 0
Mnemonic: GIO 0, 1

Binary:
Byte Index 0 1 2 3 4 5 6 7
Function Target-

address
Instruction

Number
Type Motor/

Bank
Operand

Byte3
Operand

Byte2
Operand

Byte1
Operand

Byte0
Value (hex) $01 $0f $00 $01 $00 $00 $00 $00

Reply:
Byte Index 0 1 2 3 4 5 6 7
Function Host-

address
Target-
address

Status Instructi
on

Operand
Byte3

Operand
Byte2

Operand
Byte1

Operand
Byte0

Value (hex) $02 $01 $64 $0f $00 $00 $01 $fa

 value: 506

TMCM-351 TMCL Firmware V4.45 Manual (Rev. 1.06 / 2014-MAY-16) 39

www.trinamic.com

CONNECTORS
Connector 1

:

Connector 2

Connector 3
Figure 4.2 Connectors of TMCM-351

4.6.15.1 I/O Bank 0 – Digital Inputs:
The ADIN lines can be read as digital or analogue inputs at the same time. The analogue values can be accessed in
bank 1. The IN lines can be read as digital values only.

READING ALL DIGITAL INPUTS WITH ONE GIO COMMAND:
- Set the type parameter to 255 and the bank parameter to 0.
- In this case the status of all digital input lines will be read to the lower eight bits of the accumulator.

USE FOLLOWING PROGRAM TO REPRESENT THE STATES OF THE INPUT LINES ON THE OUTPUT LINES:
Loop: GIO 255, 0

SIO 255, 2,-1
 JA Loop

1

220

19

Pin I/O port Command Range
11 IN_0 GIO 0, 0 1/0
12 IN_1 GIO 1, 0 1/0
13 IN_2 GIO 2, 0 1/0
14 IN_3 GIO 3, 0 1/0
15 IN_4 GIO 4, 0 1/0
16 IN_5 GIO 5, 0 1/0
17 ADIN_6 GIO 6, 0 1/0
18 ADIN_7 GIO 7, 0 1/0

TMCM-351 TMCL Firmware V4.45 Manual (Rev. 1.06 / 2014-MAY-16) 40

www.trinamic.com

4.6.15.2 I/O Bank 1 – Analogue Inputs:
The ADIN lines can be read back as digital or analogue inputs at the same time. The digital states can be accessed in
bank 0. The AIN lines can be used as analogue inputs only.

1 4

 Connector 1

1 4

 Connector 2

1

220

19

 Connector 3

4.6.15.3 I/O Bank 2 – the States of Digital Outputs
The states of the OUT lines (that have been set by SIO commands) can be read back using bank 2.

1

220

19

 Connector 3

Pin I/O port Command Comment Range
1 AIN_0 GIO 0, 1 Connector 1 0…1023
3 AIN_1 GIO 1, 1 Connector 1 0…1023

1 AIN_2 GIO 2, 1 Connector 2 0…1023
3 AIN_3 GIO 3, 1 Connector 2 0…1023

- - GIO 4, 1 Power supply 0…1023
- - GIO 5, 1 Temperature 0…1023
7 ADIN_6 GIO 6, 1 Connector 3 0..1023
8 ADIN_7 GIO 7, 1 Connector 3 0..1023

Pin I/O port Command Range
1 OUT_0 GIO 0, 2, <n> 1/0
2 OUT_1 GIO 1, 2, <n> 1/0
3 OUT_2 GIO 2, 2, <n> 1/0
4 OUT_3 GIO 3, 2, <n> 1/0
5 OUT_4 GIO 4, 2, <n> 1/0
6 OUT_5 GIO 5, 2, <n> 1/0
7 OUT_6 GIO 6, 2, <n> 1/0
8 OUT_7 GIO 7, 2,<n> 1/0

TMCM-351 TMCL Firmware V4.45 Manual (Rev. 1.06 / 2014-MAY-16) 41

www.trinamic.com

4.6.16 CALC (calculate)
A value in the accumulator variable, previously read by a function such as GAP (get axis parameter) can be modified
with this instruction. Nine different arithmetic functions can be chosen and one constant operand value must be
specified. The result is written back to the accumulator, for further processing like comparisons or data transfer.

Related commands: CALCX, COMP, JC, AAP, AGP, GAP, GGP, GIO

Mnemonic: CALC <operation>, <value>

Binary representation:

INSTRUCTION NO. TYPE <operation> MOT/BANK VALUE
19 0 ADD – add to accu

1 SUB – subtract from accu
2 MUL – multiply accu by
3 DIV – divide accu by
4 MOD – modulo divide by
5 AND – logical and accu with
6 OR – logical or accu with
7 XOR – logical exor accu with
8 NOT – logical invert accu
9 LOAD – load operand to accu

don’t care <operand>

Example:

Multiply accu by -5000
Mnemonic: CALC MUL, -5000

Binary:
Byte Index 0 1 2 3 4 5 6 7
Function Target-

address
Instruction

Number
Type Motor/

Bank
Operand

Byte3
Operand

Byte2
Operand

Byte1
Operand

Byte0
Value (hex) $01 $13 $02 $00 $FF $FF $EC $78

Reply:
Byte Index 0 1 2 3 4 5 6 7
Function Host-

address
Target-
address

Status Instruction Operand
Byte3

Operand
Byte2

Operand
Byte1

Operand
Byte0

Value (hex) $02 $01 $64 $13 $ff $ff $ec $78

Status = no error, value = -5000

TMCM-351 TMCL Firmware V4.45 Manual (Rev. 1.06 / 2014-MAY-16) 42

www.trinamic.com

4.6.17 COMP (compare)
The specified number is compared to the value in the accumulator register. The result of the comparison can for example
be used by the conditional jump (JC) instruction.

This command is intended for use in standalone operation only.

Internal function: The specified value is compared to the internal accumulator, which holds the value of a preceding
get or calculate instruction (see GAP/GGP/GIO/CALC/CALCX). The internal arithmetic status flags are set according to
the comparison result.

Related commands: JC (jump conditional), GAP, GGP, GIO, CALC, CALCX

Mnemonic: COMP <value>

Binary representation:

INSTRUCTION NO. TYPE MOT/BANK VALUE
20 don’t care don’t care <comparison value>

Example:

Jump to the address given by the label when the position of motor is greater than or equal to 1000.

GAP 1, 2, 0 //get axis parameter, type: no. 1 (actual position), motor: 0, value: 0 don’t care
COMP 1000 //compare actual value to 1000
JC GE, Label //jump, type: 5 greater/equal, the label must be defined somewhere else in the program

Binary format of the COMP 1000 command:
Byte Index 0 1 2 3 4 5 6 7
Function Target-

address
Instruction

Number
Type Motor/

Bank
Operand

Byte3
Operand

Byte2
Operand

Byte1
Operand

Byte0
Value (hex) $01 $14 $00 $00 $00 $00 $03 $e8

TMCM-351 TMCL Firmware V4.45 Manual (Rev. 1.06 / 2014-MAY-16) 43

www.trinamic.com

4.6.18 JC (jump conditional)
The JC instruction enables a conditional jump to a fixed address in the TMCL program memory, if the specified condition
is met. The conditions refer to the result of a preceding comparison.

This function is for standalone operation only.

Internal function: the TMCL program counter is set to the passed value if the arithmetic status flags are in the
appropriate state(s).

Related commands: JA, COMP, WAIT, CLE

Mnemonic: JC <condition>, <label>

Binary representation:

INSTRUCTION NO. TYPE <condition> MOT/BANK VALUE
21 0 ZE - zero

1 NZ - not zero
2 EQ - equal
3 NE - not equal
4 GT - greater
5 GE - greater/equal
6 LT - lower
7 LE - lower/equal
8 ETO - time out error
9 EAL – external alarm
12 ESD – shutdown error

don’t care <jump address>

Example:

Jump to address given by the label when the position of motor is greater than or equal to 1000.

GAP 1, 0, 0 //get axis parameter, type: no. 1 (actual position), motor: 0, value: 0 don’t care
COMP 1000 //compare actual value to 1000
JC GE, Label //jump, type: 5 greater/equal
...
...
Label: ROL 0, 1000

Binary format of JC GE, Label when Label is at address 10:
Byte Index 0 1 2 3 4 5 6 7
Function Target-

address
Instruction

 Number
Type Motor/

Bank
Operand

Byte3
Operand

Byte2
Operand

Byte1
Operand

Byte0
Value (hex) $01 $15 $05 $00 $00 $00 $00 $0a

TMCM-351 TMCL Firmware V4.45 Manual (Rev. 1.06 / 2014-MAY-16) 44

www.trinamic.com

4.6.19 JA (jump always)
Jump to a fixed address in the TMCL program memory.

This command is intended for standalone operation only.

Internal function: The TMCL program counter is set to the passed value.

Related commands: JC, WAIT, CSUB

Mnemonic: JA <Label>

Binary representation:

INSTRUCTION NO. TYPE MOT/BANK VALUE
22 don’t care don’t care <jump address>

Example: An infinite loop in TMCL

Loop: MVP ABS, 0, 10000
 WAIT POS, 0, 0
 MVP ABS, 0, 0
 WAIT POS, 0, 0
 JA Loop //Jump to the label Loop

Binary format of JA Loop assuming that the label Loop is at address 20:
Byte Index 0 1 2 3 4 5 6 7
Function Target-

address
Instruction

Number
Type Motor/

Bank
Operand

Byte3
Operand

Byte2
Operand

Byte1
Operand

Byte0
Value (hex) $01 $16 $00 $00 $00 $00 $00 $14

TMCM-351 TMCL Firmware V4.45 Manual (Rev. 1.06 / 2014-MAY-16) 45

www.trinamic.com

4.6.20 CSUB (call subroutine)

This function calls a subroutine in the TMCL program memory.

This command is intended for standalone operation only.

Internal function: The actual TMCL program counter value is saved to an internal stack, afterwards overwritten with
the passed value. The number of entries in the internal stack is limited to 8. This also limits nesting of subroutine calls
to 8. The command will be ignored if there is no more stack space left.

Related commands: RSUB, JA

Mnemonic: CSUB <Label>

Binary representation:

INSTRUCTION NO. TYPE MOT/BANK VALUE
23 don’t care don’t care <subroutine address>

Example: Call a subroutine

Loop: MVP ABS, 0, 10000
 CSUB SubW //Save program counter and jump to label SubW
 MVP ABS, 0, 0
 JA Loop

SubW: WAIT POS, 0, 0
 WAIT TICKS, 0, 50
 RSUB //Continue with the command following the CSUB command

Binary format of the CSUB SubW command assuming that the label SubW is at address 100:
Byte Index 0 1 2 3 4 5 6 7
Function Target-

address
Instruction

Number
Type Motor/

Bank
Operand

Byte3
Operand

Byte2
Operand

Byte1
Operand

Byte0
Value (hex) $01 $17 $00 $00 $00 $00 $00 $64

TMCM-351 TMCL Firmware V4.45 Manual (Rev. 1.06 / 2014-MAY-16) 46

www.trinamic.com

4.6.21 RSUB (return from subroutine)
Return from a subroutine to the command after the CSUB command.

This command is intended for use in standalone mode only.

Internal function: the TMCL program counter is set to the last value of the stack. The command will be ignored if the
stack is empty.

Related command: CSUB

Mnemonic: RSUB

Binary representation:

INSTRUCTION NO. TYPE MOT/BANK VALUE
24 don’t care don’t care don’t care

Binary format of RSUB:
Byte Index 0 1 2 3 4 5 6 7
Function Target-

address
Instruction

Number
Type Motor/

Bank
Operand

Byte3
Operand

Byte2
Operand

Byte1
Operand

Byte0
Value (hex) $01 $18 $00 $00 $00 $00 $00 $00

Example: Return form subroutine

Loop: MVP ABS, 0, 10000
 CSUB SubW //Save program counter and jump to label SubW
 MVP ABS, 0, 0
 JA Loop

SubW: WAIT POS, 0, 0
 WAIT TICKS, 0, 50
 RSUB //Continue with the command following the CSUB command

Binary format of the CSUB SubW command assuming that the label SubW is at address 100:
Byte Index 0 1 2 3 4 5 6 7
Function Target-

address
Instruction

Number
Type Motor/

Bank
Operand

Byte3
Operand

Byte2
Operand

Byte1
Operand

Byte0
Value (hex) $01 $17 $00 $00 $00 $00 $00 $64

TMCM-351 TMCL Firmware V4.45 Manual (Rev. 1.06 / 2014-MAY-16) 47

www.trinamic.com

4.6.22 WAIT (wait for an event to occur)
This instruction interrupts the execution of the TMCL program until the specified condition is met.

This command is intended for standalone operation only.

THERE ARE FIVE DIFFERENT WAIT CONDITIONS THAT CAN BE USED:
TICKS Wait until the number of timer ticks specified by the <ticks> parameter has been reached.

POS Wait until the target position of the motor specified by the <motor> parameter has been reached. An

optional timeout value (0 for no timeout) must be specified by the <ticks> parameter.

REFSW Wait until the reference switch of the motor specified by the <motor> parameter has been triggered. An

optional timeout value (0 for no timeout) must be specified by the <ticks> parameter.

LIMSW Wait until a limit switch of the motor specified by the <motor> parameter has been triggered. An optional

timeout value (0 for no timeout) must be specified by the <ticks> parameter.

RFS Wait until the reference search of the motor specified by the <motor> field has been reached. An optional

timeout value (0 for no timeout) must be specified by the <ticks> parameter.

The timeout flag (ETO) will be set after a timeout limit has been reached. You can then use a JC ETO command to check
for such errors or clear the error using the CLE command.

Internal function: the TMCL program counter is held until the specified condition is met.

Related commands: JC, CLE

Mnemonic: WAIT <condition>, <motor>, <ticks>

Binary representation:

INSTRUCTION NO. TYPE <condition> MOT/BANK VALUE

27

0 TICKS - timer ticks*1 don’t care <no. of ticks*>

1 POS - target position reached <motor>
0… 2

<no. of ticks* for timeout>,
0 for no timeout

2 REFSW – reference switch <motor>
0… 2

<no. of ticks* for timeout>,
0 for no timeout

3 LIMSW – limit switch <motor>
0… 2

<no. of ticks* for timeout>,
0 for no timeout

4 RFS – reference search completed <motor>
0… 2

<no. of ticks* for timeout>,
0 for no timeout

 *1 one tick is 10 milliseconds

Example:

Wait for motor 0 to reach its target position, without timeout
Mnemonic: WAIT POS, 0, 0

Binary:
Byte Index 0 1 2 3 4 5 6 7
Function Target-

address
Instruction

Number
Type Motor/

Bank
Operand

Byte3
Operand

Byte2
Operand

Byte1
Operand

Byte0
Value (hex) $01 $1b $01 $00 $00 $00 $00 $00

TMCM-351 TMCL Firmware V4.45 Manual (Rev. 1.06 / 2014-MAY-16) 48

www.trinamic.com

4.6.23 STOP (stop TMCL program execution)
This function stops executing a TMCL program. The host address and the reply are only used to transfer the instruction
to the TMCL program memory.

The STOP command should be placed at the end of every standalone TMCL program. It is not to be used in direct mode.

Internal function: TMCL instruction fetching is stopped.

Related commands: none
Mnemonic: STOP

Binary representation:

INSTRUCTION NO. TYPE MOT/BANK VALUE
28 don’t care don’t care don’t care

Example:

Mnemonic: STOP

Binary:
Byte Index 0 1 2 3 4 5 6 7
Function Target-

address
Instruction

Number
Type Motor/

Bank
Operand

Byte3
Operand

Byte2
Operand

Byte1
Operand

Byte0
Value (hex) $01 $1c $00 $00 $00 $00 $00 $00

TMCM-351 TMCL Firmware V4.45 Manual (Rev. 1.06 / 2014-MAY-16) 49

www.trinamic.com

4.6.24 SAC (SPI bus access)
This command allows access to external SPI devices connected to the SPI bus of the module. Direct values and the
contents of the accumulator register can be sent.
In standalone mode the received data is also stored in the accumulator.
The module has three chip select outputs (SPI_SEL0, SPI_SEL1, and SPI_SEL2). The type parameter (bus number)
determines the chip select output that is to be used. The motor/bank parameter determines the number of bytes to be
sent (1, 2, 3, or 4). The value parameter contains the data to be sent. When bit 7 of the bus number is set, this value is
ignored and the contents of the accumulator are sent instead.

Please note that in the TMCL-IDE always all three values have to be specified (when sending the contents of the
accumulator the value parameter is a dummy parameter).

Related commands: SIO, GIO

Mnemonic: SAC <bus number>, <number of bytes>, <send data>

Binary representation:

INSTRUCTION NO. TYPE MOT/BANK VALUE
29 <bus number> <number of bytes> <send data>

Reply in direct mode:
STATUS VALUE
100 – Success <received data>

THE BUS NUMBERS ARE AS FOLLOWS:
Bus number Chip select output
0 SPI_SEL0, output direct value
2 SPI_SEL1, output direct value
3 SPI_SEL2, output direct value
128 SPI_SEL0, output contents of accumulator
130 SPI_SLE1, output contents of accumulator
131 SPI_SEL2, output contents of accumulator

TMCM-351 TMCL Firmware V4.45 Manual (Rev. 1.06 / 2014-MAY-16) 50

www.trinamic.com

4.6.25 SCO (set coordinate)
Up to 20 position values (coordinates) can be stored for every axis for use with the MVP COORD command. This
command sets a coordinate to a specified value. Depending on the global parameter 84, the coordinates are only stored
in RAM or also stored in the EEPROM and copied back on startup (with the default setting the coordinates are stored in
RAM only).

Please note that the coordinate number 0 is always stored in RAM only.

Internal function: the passed value is stored in the internal position array.

Related commands: GCO, CCO, MVP

Mnemonic: SCO <coordinate number>, <motor>, <position>

Binary representation:

INSTRUCTION NO. TYPE MOT/BANK VALUE

30 <coordinate number>
0… 20

<motor>
0… 2

<position>
-231… 231-1

Reply in direct mode:

STATUS VALUE
100 – OK don’t care

Example:

Set coordinate #1 of motor to 1000
Mnemonic: SCO 1, 0, 1000

Binary:
Byte Index 0 1 2 3 4 5 6 7
Function Target-

address
Instruction

Number
Type Motor/

Bank
Operand

Byte3
Operand

Byte2
Operand

Byte1
Operand

Byte0
Value (hex) $01 $1e $01 $00 $00 $00 $03 $e8

Two special functions of this command have been introduced that make it possible to copy all coordinates or one
selected coordinate to the EEPROM.

These functions can be accessed using the following special forms of the SCO command:

SCO 0, 255, 0 copies all coordinates (except coordinate number 0) from RAM to the

EEPROM.
SCO <coordinate number>, 255, 0 copies the coordinate selected by <coordinate number> to the EEPROM.

The coordinate number must be a value between 1 and 20.

TMCM-351 TMCL Firmware V4.45 Manual (Rev. 1.06 / 2014-MAY-16) 51

www.trinamic.com

4.6.26 GCO (get coordinate)
This command makes possible to read out a previously stored coordinate. In standalone mode the requested value is
copied to the accumulator register for further processing purposes such as conditioned jumps. In direct mode, the value
is only output in the value field of the reply, without affecting the accumulator. Depending on the global parameter 84,
the coordinates are only stored in RAM or also stored in the EEPROM and copied back on startup (with the default
setting the coordinates are stored in RAM, only).

Please note that the coordinate number 0 is always stored in RAM, only.

Internal function: the desired value is read out of the internal coordinate array, copied to the accumulator register and
– in direct mode – returned in the value field of the reply.

Related commands: SCO, CCO, MVP

Mnemonic: GCO <coordinate number>, <motor>

Binary representation:

INSTRUCTION NO. TYPE MOT/BANK VALUE

31 <coordinate number>
0… 20

<motor>
0… 2 don’t care

Reply in direct mode:

STATUS VALUE
100 – OK don’t care

Example:

Get motor value of coordinate 1
Mnemonic: GCO 1, 0

Binary:
Byte Index 0 1 2 3 4 5 6 7
Function Target-

address
Instruction

Number
Type Motor/

Bank
Operand

Byte3
Operand

Byte2
Operand

Byte1
Operand

Byte0
Value (hex) $01 $1f $01 $00 $00 $00 $00 $00

Reply:
Byte Index 0 1 2 3 4 5 6 7
Function Target-

address
Target-
address

Status Instructio
n

Operand
Byte3

Operand
Byte2

Operand
Byte1

Operand
Byte0

Value (hex) $02 $01 $64 $0a $00 $00 $00 $00
 Value: 0

Two special functions of this command have been introduced that make it possible to copy all coordinates or one
selected coordinate from the EEPROM to the RAM.

These functions can be accessed using the following special forms of the GCO command:

GCO 0, 255, 0 copies all coordinates (except coordinate number 0) from the EEPROM to

the RAM.
GCO <coordinate number>, 255, 0 copies the coordinate selected by <coordinate number> from the EEPROM

to the RAM. The coordinate number must be a value between 1 and 20.

TMCM-351 TMCL Firmware V4.45 Manual (Rev. 1.06 / 2014-MAY-16) 52

www.trinamic.com

4.6.27 CCO (capture coordinate)
The actual position of the axis is copied to the selected coordinate variable. Depending on the global parameter 84, the
coordinates are only stored in RAM or also stored in the EEPROM and copied back on startup (with the default setting
the coordinates are stored in RAM only). Please see the SCO and GCO commands on how to copy coordinates between
RAM and EEPROM.

Note, that the coordinate number 0 is always stored in RAM only.

Internal function: the selected (24 bit) position values are written to the 20 by 3 bytes wide coordinate array.

Related commands: SCO, GCO, MVP

Mnemonic: CCO <coordinate number>, <motor>

Binary representation:

INSTRUCTION NO. TYPE MOT/BANK VALUE

32 <coordinate number>
0… 20

<motor>
0… 2

don’t care

Reply in direct mode:

STATUS VALUE
100 – OK don’t care

Example:

Store current position of the axis 0 to coordinate 3
Mnemonic: CCO 3, 0

Binary:
Byte Index 0 1 2 3 4 5 6 7
Function Target-

address
Instruction

Number
Type Motor/

Bank
Operand

Byte3
Operand

Byte2
Operand

Byte1
Operand

Byte0
Value (hex) $01 $20 $03 $00 $00 $00 $00 $00

TMCM-351 TMCL Firmware V4.45 Manual (Rev. 1.06 / 2014-MAY-16) 53

www.trinamic.com

4.6.28 ACO (accu to coordinate)
With the ACO command the actual value of the accumulator is copied to a selected coordinate of the motor. Depending
on the global parameter 84, the coordinates are only stored in RAM or also stored in the EEPROM and copied back on
startup (with the default setting the coordinates are stored in RAM only).

Please note also that the coordinate number 0 is always stored in RAM only. For Information about storing coordinates
refer to the SCO command.

Internal function: the actual value of the accumulator is stored in the internal position array.

Related commands: GCO, CCO, MVP COORD, SCO

Mnemonic: ACO <coordinate number>, <motor>

Binary representation:

INSTRUCTION NO. TYPE MOT/BANK VALUE

39 <coordinate number>
0… 20

<motor>
0… 2 don’t care

Reply in direct mode:

STATUS VALUE
100 – OK don’t care

Example:

Copy the actual value of the accumulator to coordinate 1 of motor 0
Mnemonic: ACO 1, 0

Binary:
Byte Index 0 1 2 3 4 5 6 7
Function Target-

address
Instruction

Number
Type Motor/

Bank
Operand

Byte3
Operand

Byte2
Operand

Byte1
Operand

Byte0
Value (hex) $01 $27 $01 $00 $00 $00 $00 $00

TMCM-351 TMCL Firmware V4.45 Manual (Rev. 1.06 / 2014-MAY-16) 54

www.trinamic.com

4.6.29 CALCX (calculate using the X register)
This instruction is very similar to CALC, but the second operand comes from the X register. The X register can be loaded
with the LOAD or the SWAP type of this instruction. The result is written back to the accumulator for further processing
like comparisons or data transfer.

Related commands: CALC, COMP, JC, AAP, AGP

Mnemonic: CALCX <operation>

Binary representation:

INSTRUCTION NO. TYPE <operation> MOT/BANK VALUE

33

0 ADD add X register to accu
1 SUB subtract X register from accu
2 MUL multiply accu by X register
3 DIV divide accu by X-register
4 MOD modulo divide accu by x-register
5 AND logical and accu with X-register
6 OR logical or accu with X-register
7 XOR logical exor accu with X-register
8 NOT logical invert X-register
9 LOAD load accu to X-register
10 SWAP swap accu with X-register

don’t care don’t care

Example:

Multiply accu by X-register
Mnemonic: CALCX MUL

Binary:
Byte Index 0 1 2 3 4 5 6 7
Function Target-

address
Instruction

Number
Type Motor/

Bank
Operand

Byte3
Operand

Byte2
Operand

Byte1
Operand

Byte0
Value (hex) $01 $21 $02 $00 $00 $00 $00 $00

TMCM-351 TMCL Firmware V4.45 Manual (Rev. 1.06 / 2014-MAY-16) 55

www.trinamic.com

4.6.30 AAP (accumulator to axis parameter)
The content of the accumulator register is transferred to the specified axis parameter. For practical usage, the
accumulator has to be loaded e.g. by a preceding GAP instruction. The accumulator may have been modified by the
CALC or CALCX (calculate) instruction.

For a table with parameters and values which can be used together with this command please refer to chapter 5.

Related commands: AGP, SAP, GAP, SGP, GGP, GIO, GCO, CALC, CALCX

Mnemonic: AAP <parameter number>, <motor>

Binary representation:

INSTRUCTION NO. TYPE MOT/BANK VALUE

34 <parameter number> <motor>
0… 2 <don't care>

Reply in direct mode:

STATUS VALUE
100 – OK don’t care

Example:

Positioning motor by a potentiometer connected to the analogue input #0:

Start: GIO 0,1 // get value of analogue input line 0

CALC MUL, 4 // multiply by 4
AAP 0,0 // transfer result to target position of motor 0
JA Start // jump back to start

Binary format of the AAP 0,0 command:
Byte Index 0 1 2 3 4 5 6 7
Function Target-

address
Instruction

Number
Type Motor/

Bank
Operand

Byte3
Operand

Byte2
Operand

Byte1
Operand

Byte0
Value (hex) $01 $22 $00 $00 $00 $00 $00 $00

TMCM-351 TMCL Firmware V4.45 Manual (Rev. 1.06 / 2014-MAY-16) 56

www.trinamic.com

4.6.31 AGP (accumulator to global parameter)
The content of the accumulator register is transferred to the specified global parameter. For practical usage, the
accumulator has to be loaded e.g. by a preceding GAP instruction. The accumulator may have been modified by the
CALC or CALCX (calculate) instruction.

Note that the global parameters in bank 0 are EEPROM-only and thus should not be modified automatically by a
standalone application.
For a table with parameters and bank numbers which can be used together with this command please refer to chapter
6.

Related commands: AAP, SGP, GGP, SAP, GAP, GIO, CALC, CALCX

Mnemonic: AGP <parameter number>, <bank number>

Binary representation:

INSTRUCTION NO. TYPE MOT/BANK VALUE
35 <parameter number> <bank number> don’t care

Reply in direct mode:

STATUS VALUE
100 – OK don’t care

Example:

Copy accumulator to TMCL user variable #3
Mnemonic: AGP 3, 2

Binary:
Byte Index 0 1 2 3 4 5 6 7
Function Target-

address
Instruction

Number
Type Motor/

Bank
Operand

Byte3
Operand

Byte2
Operand

Byte1
Operand

Byte0
Value (hex) $01 $23 $03 $02 $00 $00 $00 $00

TMCM-351 TMCL Firmware V4.45 Manual (Rev. 1.06 / 2014-MAY-16) 57

www.trinamic.com

4.6.32 CLE (clear error flags)
This command clears the internal error flags.

The CLE command is intended for use in standalone mode only and must not be used in direct mode.

THE FOLLOWING ERROR FLAGS CAN BE CLEARED BY THIS COMMAND (DETERMINED BY THE <FLAG> PARAMETER):
- ALL: clear all error flags.
- ETO: clear the timeout flag.
- EAL: clear the external alarm flag
- EDV: clear the deviation flag
- EPO: clear the position error flag

Related commands: JC

Mnemonic: CLE <flags>
 where <flags>=ALL|ETO|EDV|EPO

Binary representation:

INSTRUCTION NO. TYPE MOT/BANK VALUE

36

0 – (ALL) all flags
1 – (ETO) timeout flag
2 – (EAL) alarm flag
3 – (EDV) deviation flag
4 – (EPO) position flag
5 – (ESD) shutdown flag

don’t care don’t care

Example:

Reset the timeout flag
Mnemonic: CLE ETO

Binary:
Byte Index 0 1 2 3 4 5 6 7
Function Target-

address
Instruction

Number
Type Motor/

Bank
Operand

Byte3
Operand

Byte2
Operand

Byte1
Operand

Byte0
Value (hex) $01 $24 $01 $00 $00 $00 $00 $00

TMCM-351 TMCL Firmware V4.45 Manual (Rev. 1.06 / 2014-MAY-16) 58

www.trinamic.com

4.6.33 VECT (set interrupt vector)
The VECT command defines an interrupt vector. It needs an interrupt number and a label as parameter (like in JA, JC
and CSUB commands).

This label must be the entry point of the interrupt handling routine.

Related commands: EI, DI, RETI

Mnemonic: VECT <interrupt number>, <label>

Binary representation:

INSTRUCTION NO. TYPE MOT/BANK VALUE
37 <interrupt number> don’t care <label>

THE FOLLOWING TABLE SHOWS ALL INTERRUPT VECTORS THAT CAN BE USED:
Interrupt number Interrupt type

0 Timer 0
1 Timer 1
2 Timer 2
3 Target position reached 0
4 Target position reached 1
5 Target position reached 2

15 stallGuard axis 0
16 stallGuard axis 1
17 stallGuard axis 2
21 Deviation 0
22 Deviation 1
23 Deviation 2
27 Left stop switch 0
28 Right stop switch 0
29 Left stop switch 1
30 Right stop switch 1
31 Left stop switch 2
32 Right stop switch 2
39 Input change 0
40 Input change 1
41 Input change 2
42 Input change 3
43 Input change 4
44 Input change 5
45 Input change 6
46 Input change 7

255 Global interrupts

Example:
 Define interrupt vector at target position 500
 VECT 3, 500

Binary format of VECT:
Byte Index 0 1 2 3 4 5 6 7
Function Target-

address
Instruction

Number
Type Motor/

Bank
Operand

Byte3
Operand

Byte2
Operand

Byte1
Operand

Byte0
Value (hex) $01 $25 $03 $00 $00 $00 $01 $F4

TMCM-351 TMCL Firmware V4.45 Manual (Rev. 1.06 / 2014-MAY-16) 59

www.trinamic.com

4.6.34 EI (enable interrupt)
The EI command enables an interrupt. It needs the interrupt number as parameter. Interrupt number 255 globally
enables interrupts.

Related command: DI, VECT, RETI

Mnemonic: EI <interrupt number>

Binary representation:

INSTRUCTION NO. TYPE MOT/BANK VALUE
25 <interrupt number> don’t care don’t care

THE FOLLOWING TABLE SHOWS ALL INTERRUPT VECTORS THAT CAN BE USED:
Interrupt number Interrupt type

0 Timer 0
1 Timer 1
2 Timer 2
3 Target position reached 0
4 Target position reached 1
5 Target position reached 2

15 stallGuard axis 0
16 stallGuard axis 1
17 stallGuard axis 2
21 Deviation 0
22 Deviation 1
23 Deviation 2
27 Left stop switch 0
28 Right stop switch 0
29 Left stop switch 1
30 Right stop switch 1
31 Left stop switch 2
32 Right stop switch 2
39 Input change 0
40 Input change 1
41 Input change 2
42 Input change 3
43 Input change 4
44 Input change 5
45 Input change 6
46 Input change 7

255 Global interrupts

TMCM-351 TMCL Firmware V4.45 Manual (Rev. 1.06 / 2014-MAY-16) 60

www.trinamic.com

Examples:

Enable interrupts globally
EI, 255

Binary format of EI:
Byte Index 0 1 2 3 4 5 6 7
Function Target-

address
Instruction

Number
Type Motor/

Bank
Operand

Byte3
Operand

Byte2
Operand

Byte1
Operand

Byte0
Value (hex) $01 $19 $FF $00 $00 $00 $00 $00

Enable interrupt when target position reached
EI, 3

Binary format of EI:
Byte Index 0 1 2 3 4 5 6 7
Function Target-

address
Instruction

Number
Type Motor/

Bank
Operand

Byte3
Operand

Byte2
Operand

Byte1
Operand

Byte0
Value (hex) $01 $19 $03 $00 $00 $00 $00 $00

TMCM-351 TMCL Firmware V4.45 Manual (Rev. 1.06 / 2014-MAY-16) 61

www.trinamic.com

4.6.35 DI (disable interrupt)
The DI command disables an interrupt. It needs the interrupt number as parameter. Interrupt number 255 globally
disables interrupts.

Related command: EI, VECT, RETI

Mnemonic: DI <interrupt number>

Binary representation:

INSTRUCTION NO. TYPE MOT/BANK VALUE
26 <interrupt number> don’t care don’t care

THE FOLLOWING TABLE SHOWS ALL INTERRUPT VECTORS THAT CAN BE USED:
Interrupt number Interrupt type

0 Timer 0
1 Timer 1
2 Timer 2
3 Target position reached 0
4 Target position reached 1
5 Target position reached 2

15 stallGuard axis 0
16 stallGuard axis 1
17 stallGuard axis 2
21 Deviation 0
22 Deviation 1
23 Deviation 2
27 Left stop switch 0
28 Right stop switch 0
29 Left stop switch 1
30 Right stop switch 1
31 Left stop switch 2
32 Right stop switch 2
39 Input change 0
40 Input change 1
41 Input change 2
42 Input change 3
43 Input change 4
44 Input change 5
45 Input change 6
46 Input change 7

255 Global interrupts

TMCM-351 TMCL Firmware V4.45 Manual (Rev. 1.06 / 2014-MAY-16) 62

www.trinamic.com

Examples:

Disable interrupts globally
DI, 255

Binary format of DI:
Byte Index 0 1 2 3 4 5 6 7
Function Target-

address
Instruction

Number
Type Motor/

Bank
Operand

Byte3
Operand

Byte2
Operand

Byte1
Operand

Byte0
Value (hex) $01 $1A $FF $00 $00 $00 $00 $00

Disable interrupt when target position reached
DI, 3

Binary format of DI:
Byte Index 0 1 2 3 4 5 6 7
Function Target-

address
Instruction

Number
Type Motor/

Bank
Operand

Byte3
Operand

Byte2
Operand

Byte1
Operand

Byte0
Value (hex) $01 $1A $03 $00 $00 $00 $00 $00

TMCM-351 TMCL Firmware V4.45 Manual (Rev. 1.06 / 2014-MAY-16) 63

www.trinamic.com

4.6.36 RETI (return from interrupt)
This command terminates the interrupt handling routine, and the normal program execution continues.

At the end of an interrupt handling routine the RETI command must be executed.

Internal function: the saved registers (A register, X register, flags) are copied back. Normal program execution
continues.

Related commands: EI, DI, VECT

Mnemonic: RETI

Binary representation:

INSTRUCTION NO. TYPE MOT/BANK VALUE
38 don’t care don’t care don’t care

Example: Terminate interrupt handling and continue with normal program execution
 RETI

Binary format of RETI:
Byte Index 0 1 2 3 4 5 6 7
Function Target-

address
Instruction

Number
Type Motor/

Bank
Operand

Byte3
Operand

Byte2
Operand

Byte1
Operand

Byte0
Value (hex) $01 $26 $00 $00 $00 $00 $01 $00

TMCM-351 TMCL Firmware V4.45 Manual (Rev. 1.06 / 2014-MAY-16) 64

www.trinamic.com

4.6.37 Customer Specific TMCL Command Extension (user function)
The user definable functions UF0… UF7 are predefined functions without topic for user specific purposes. A user function
(UF) command uses three parameters. Please contact TRINAMIC for a customer specific programming.

Internal function: Call user specific functions implemented in C by TRINAMIC.

Related commands: none

Mnemonic: UF0… UF7 <parameter number>

Binary representation:

INSTRUCTION NO. TYPE MOT/BANK VALUE
64… 71 user defined user defined user defined

Reply in direct mode:
Byte Index 0 1 2 3 4 5 6 7
Function Target-

address
Target-
address

Status Instruction Operand
Byte3

Operand
Byte2

Operand
Byte1

Operand
Byte0

Value (hex) $02 $01 user
defined

64… 71 user
defined

user
defined

user
defined

user
defined

TMCM-351 TMCL Firmware V4.45 Manual (Rev. 1.06 / 2014-MAY-16) 65

www.trinamic.com

4.6.38 Request Target Position Reached Event
This command is the only exception to the TMCL protocol, as it sends two replies: One immediately after the command
has been executed (like all other commands also), and one additional reply that will be sent when the motor has reached
its target position.

This instruction can only be used in direct mode (in standalone mode, it is covered by the WAIT command) and hence
does not have a mnemonic.

Internal function: Send an additional reply when the motor has reached its target position

Mnemonic: ---

Binary representation:

INSTRUCTION NO. TYPE MOT/BANK VALUE
138 don’t care don’t care <motor bit mask>

The value field contains a bit mask where every bit stands for one motor:
bit 0 = motor 0
bit 1 = motor 1
bit 2 = motor 2

Reply in direct mode (right after execution of this command):
Byte Index 0 1 2 3 4 5 6 7
Function Target-

address
Target-
address

Status Instruction Operand
Byte3

Operand
Byte2

Operand
Byte1

Operand
Byte0

Value (hex) $02 $01 100 138 $00 $00 $00 Motor bit
mask

Additional reply in direct mode (after motors have reached their target positions):
Byte Index 0 1 2 3 4 5 6 7
Function Target-

address
Target-
address

Status Instruction Operand
Byte3

Operand
Byte2

Operand
Byte1

Operand
Byte0

Value (hex) $02 $01 128 138 $00 $00 $00 Motor bit
mask

4.6.39 BIN (return to binary mode)
This command can only be used in ASCII mode. It quits the ASCII mode and returns to binary mode.

Related Commands: none

Mnemonic: BIN

Binary representation: This command does not have a binary representation as it can only be used in ASCII mode.

TMCM-351 TMCL Firmware V4.45 Manual (Rev. 1.06 / 2014-MAY-16) 66

www.trinamic.com

4.6.40 TMCL Control Functions
There are several TMCL control functions, but for the user are only 136 and 137 interesting. Other control functions can
be used with axis parameters.

INSTRUCTION NO. TYPE COMMAND DESCRIPTION

136 0 – string
1 – binary

Get firmware
version

Get the module type and firmware revision as a string
or in binary format. (Motor/Bank and Value are
ignored.)

137 don’t care Reset to factory
defaults

Reset all settings stored in the EEPROM to their factory
defaults
This command does not send back a reply.
Value must be 1234

FURTHER INFORMATION ABOUT COMMAND 136

- Type set to 0 - reply as a string:

Byte index Contents
1 Host Address
2… 9 Version string (8 characters, e.g. 351V.442)

There is no checksum in this reply format!

- Type set to 1 - version number in binary format:
The version number is output in the value field of the reply in the following way:

Byte index in value field Contents
1 01
2 5F
3 Type number, low byte
4 Type number, high byte

TMCM-351 TMCL Firmware V4.45 Manual (Rev. 1.06 / 2014-MAY-16) 67

www.trinamic.com

5 Axis Parameters
The following sections describe all axis parameters that can be used with the SAP, GAP, AAP, STAP and RSAP commands.

MEANING OF THE LETTERS IN COLUMN ACCESS:
Access
type

Related
command(s)

Description

R GAP Parameter readable
W SAP, AAP Parameter writable
E STAP, RSAP Parameter automatically restored from EEPROM after reset or power-on. These

parameters can be stored permanently in EEPROM using STAP command and also
explicitly restored (copied back from EEPROM into RAM) using RSAP.

 Basic parameters should be adjusted to motor / application for proper module operation.

Number Axis Parameter Description Range Acc.
0 Target (next)

position
The desired position in position mode (see ramp
mode, no. 138).

-231… 231-1
[µsteps]

RW

1 Actual position The current position of the motor. Should only be
overwritten for reference point setting.

-231… 231-1
[µsteps]

RW

2 Target (next)
speed

The desired speed in velocity mode (see ramp
mode, no. 138). In position mode, this parameter is
set by hardware: to the maximum speed during
acceleration, and to zero during deceleration and
rest.

±2047

�
16MHz
65536

∙ 2PD
μsteps

sec �

RW

3 Actual speed The current rotation speed. ±2047
�
16MHz
65536

∙ 2PD
μsteps

sec �
RW

4 Maximum
positioning speed

Should not exceed the physically highest possible
value. Adjust the pulse divisor (no. 154), if the
speed value is very low (<50) or above the upper
limit. See TMC429 datasheet for calculation of
physical units.

0… 2047

�
16MHz
65536

∙ 2PD
μsteps

sec �

RWE

5 Maximum
acceleration

The limit for acceleration (and deceleration).
Changing this parameter requires re-calculation of
the acceleration factor (no. 146) and the
acceleration divisor (no. 137), which is done
automatically. See TMC429 datasheet for
calculation of physical units.

0… 2047*1 RWE

6 Absolute max.
current
(CS / Current
Scale)

The maximum value is 255. This value means
100% of the maximum current of the module. The
current adjustment is within the range 0… 255
and can be adjusted in 32 steps.

The most important motor setting, since too high
values might cause motor damage!

0… 7 79…87 160… 167 240… 247
8… 15 88… 95 168… 175 248… 255
16… 23 96… 103 176… 183
24… 31 104… 111 184… 191
32… 39 112… 119 192… 199
40… 47 120… 127 200… 207
48… 55 128… 135 208… 215
56… 63 136… 143 216… 223
64… 71 144… 151 224… 231
72… 79 152… 159 232… 239

0… 255
𝐼𝐼𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =< 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 >×

4𝐴𝐴
255

𝐼𝐼𝑅𝑅𝑅𝑅𝑅𝑅 =< 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 >×
2.8𝐴𝐴
255

RWE

TMCM-351 TMCL Firmware V4.45 Manual (Rev. 1.06 / 2014-MAY-16) 68

www.trinamic.com

Number Axis Parameter Description Range Acc.
7 Standby current The current limit two seconds after the motor has

stopped.
0… 255
𝐼𝐼𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =< 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 >×

4𝐴𝐴
255

𝐼𝐼𝑅𝑅𝑅𝑅𝑅𝑅 =< 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 >×
2.8𝐴𝐴
255

RWE

8 Target pos.
reached

Indicates that the actual position equals the target
position.

0/1 R

9 Ref. switch status The logical state of the reference (left) switch.
See the TMC429 data sheet for the different switch
modes. The default has two switch modes: the left
switch as the reference switch, the right switch as
a limit (stop) switch.

0/1 R

10 Right limit switch
status

The logical state of the (right) limit switch. 0/1 R

11 Left limit switch
status

The logical state of the left limit switch (in three
switch mode)

0/1 R

12 Right limit switch
disable

If set, deactivates the stop function of the right
switch

0/1 RWE

13 Left limit switch
disable

Deactivates the stop function of the left switch
resp. reference switch if set.

0/1 RWE

130 Minimum speed Should always be set 1 to ensure exact reaching of
the target position. Do not change!

0… 2047
�
16MHz
65536

∙ 2PD
μsteps

sec �

RWE

135 Actual
acceleration

The current acceleration (read only). 0… 2047*1 R

138 Ramp mode Automatically set when using ROR, ROL, MST and
MVP.
0: position mode. Steps are generated, when the
parameters actual position and target position
differ. Trapezoidal speed ramps are provided.
2: velocity mode. The motor will run continuously
and the speed will be changed with constant
(maximum) acceleration, if the parameter target
speed is changed.
For special purposes, the soft mode (value 1) with
exponential decrease of speed can be selected.

0/1/2 RWE

140 Microstep
resolution

0 full step*)
1 half step*)
2 4 microsteps
3 8 microsteps
4 16 microsteps
5 32 microsteps**)
6 64 microsteps**)

Modifying this parameter will affect the rotation speed
in the same relation:
*) Full-step and half-step settings are not optimized for
use without an adapted microstepping table. These
settings step through the microstep table in steps of 64
resp. 32. To get real full stepping use axis parameter 211
or load an adapted microstepping table.
**) If the module is specified for 16 microsteps only,
switching to 32 or 64 microsteps brings an enhancement
in resolution and smoothness. The position counter will
use the full resolution, but, the motor will resolve a
maximum of 24 different microsteps for the 32 or 64
microstep units.

0… 6 RWE

TMCM-351 TMCL Firmware V4.45 Manual (Rev. 1.06 / 2014-MAY-16) 69

www.trinamic.com

Number Axis Parameter Description Range Acc.
141 Reference switch

tolerance
For three-switch mode: a position range, where
an additional switch (connected to the REFL
input) won't cause motor stop.

0… 4095
[µsteps]

RW

149 Soft stop flag If cleared, the motor will stop immediately
(disregarding motor limits), when the reference or
limit switch is hit.

0/1 RWE

153 Ramp divisor The exponent of the scaling factor for the ramp
generator- should be de/incremented carefully (in
steps of one).

0… 13 RWE

154 Pulse divisor The exponent of the scaling factor for the pulse
(step) generator – should be de/incremented
carefully (in steps of one).

0… 13 RWE

193 Reference search
mode

1 search left stop switch only
2 search right
stop switch, then search left stop switch
3 search right stop switch, then search left stop switch

from both sides
Please see chapter 7.1 for details on reference
search.

1/2/3 RWE

194 Reference search
speed

For the reference search this value directly
specifies the search speed.

0… 2047

RWE

195 Reference switch
speed

Similar to parameter no. 194, the speed for the
switching point calibration can be selected.

0… 2047

RWE

196 Reference switch
distance

This parameter provides the distance between the
end switches after executing the RFS command
(mode 2 or 3).

0… 2.147.483.647 R

200 Boost current Current used for acceleration and deceleration
phases.
If set to 0 the same current as set by axis parameter
6 will be used.

0… 255
𝐼𝐼𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =< 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 >×

4𝐴𝐴
255

𝐼𝐼𝑅𝑅𝑅𝑅𝑅𝑅 =< 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 >×
2.8𝐴𝐴
255

RWE

203 Mixed decay
threshold

If the actual velocity is above this threshold, mixed
decay will be used.
Set this parameter to -1 to turn on mixed decay
permanently – also in the rising part of the
microstep wave. This can be used to fix microstep
errors.

0… 2048
or -1

RWE

204 Freewheeling Time after which the power to the motor will be cut
when its velocity has reached zero.

0… 65535
0 = never
[msec]

RWE

205 Stall detection
threshold

The motor will be stopped if the load value exceeds
the stall detection threshold.

0 no stall detection
1…

7
Stall detection threshold setting:
1 (low threshold) up to
7 (high threshold).

Switch off mixed decay to get usable results.

0… 7 RWE

206 Actual load value Readout of the actual load value used for stall
detection.

0… 7 R

207 Extended error
flags

Bit 0: motor has been stopped due to encoder
deviation error.
Bit 1: motor has been stopped due to motor stall.
These two flags are cleared with the next
movement command.

0… 3 R

TMCM-351 TMCL Firmware V4.45 Manual (Rev. 1.06 / 2014-MAY-16) 70

www.trinamic.com

Number Axis Parameter Description Range Acc.
208 Driver error flags Bit 0 Overcurrent bridge A low side

Bit 1 Overcurrent bridge B low side
Bit 2 Open load bridge A
Bit 3 Open load bridge B
Bit 4 Overcurrent high side
Bit 5 Driver undervoltage
Bit 6 Temperature warning
Bit 7 Overtemperature

0… 255 R

209 Encoder position The value of an encoder register can be read out or
written.

[encoder steps] RW

210 Encoder prescaler Prescaler for the encoder. See chapter 7.2. RWE
211 Fullstep threshold

When exceeding this speed the driver will switch to
real full step mode.
To disable this feature set this parameter to zero or
to 2048.
Setting a full step threshold allows higher motor
torque of the motor at higher velocity. When
experimenting with this in a given application, try
to reduce the motor current in order to be able to
reach a higher motor velocity!

0… 2048 RWE

212 Maximum
encoder deviation

When the actual position (parameter 1) and the
encoder position (parameter 209) differ more than
set here the motor will be stopped. This function is
switched off when the maximum deviation is set to
zero.

0… 65535
[encoder steps]

RWE

213 Group index All motors on one module that have the same
group index will also get the same commands when
a ROL, ROR, MST, MVP or RFS is issued for one of
these motors.

0… 255 RW

214 Power down delay Standstill period before the current is changed
down to standby current. The standard value is
200msec.

1… 65535
[10msec]

RWE

*1 Unit of acceleration: 16𝑀𝑀𝑀𝑀𝑀𝑀2

536870912∙2𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑+𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 microsteps
sec2

TMCM-351 TMCL Firmware V4.45 Manual (Rev. 1.06 / 2014-MAY-16) 71

www.trinamic.com

6 Global Parameters
GLOBAL PARAMETERS ARE GROUPED INTO 4 BANKS:
- bank 0 (global configuration of the module)
- bank 1 (user C variables)
- bank 2 (user TMCL variables)
- bank 3 (interrupt configuration)

Please use SGP and GGP commands to write and read global parameters.

6.1 Bank 0
PARAMETERS 0… 38
The first parameters 0…38 are only mentioned here for completeness. They are used for the internal handling of the
TMCL-IDE and serve for loading micro step and driver tables. Normally these parameters remain untouched.

If you want to use them for loading your specific values with your PC software please contact TRINAMIC and ask how to
do this. Otherwise you might cause damage on the motor driver!

Number Parameter
0 datagram low word (read only)
1 datagram high word (read only)
2 cover datagram position
3 cover datagram length
4 cover datagram contents
5 reference switch states (read only)
6 TMC428/429 SMGP register
7… 22 driver chain configuration long words 0..15
23… 38 microstep table long word 0..15

PARAMETERS 64… 132
Parameters with numbers from 64 on configure stuff like the serial address of the module RS232/RS485/USB baud rate
or the CAN bit rate. Change these parameters to meet your needs. The best and easiest way to do this is to use the
appropriate functions of the TMCL-IDE. The parameters with numbers between 64 and 128 are stored in EEPROM only.

An SGP command on such a parameter will always store it permanently and no extra STGP command is needed. Take
care when changing these parameters, and use the appropriate functions of the TMCL-IDE to do it in an interactive way.

MEANING OF THE LETTERS IN COLUMN ACCESS:
Access
type

Related
command(s)

Description

R GGP Parameter readable
W SGP, AGP Parameter writable
E STGP, RSGP Parameter stored permanently in EEPROM

TMCM-351 TMCL Firmware V4.45 Manual (Rev. 1.06 / 2014-MAY-16) 72

www.trinamic.com

Number Global parameter Description Range Acc.
64 EEPROM magic Setting this parameter to a different value as $E4 will

cause re-initialization of the axis and global parameters (to
factory defaults) after the next power up. This is useful in
case of miss-configuration.

0… 255 RWE

65 RS232/RS485*) baud
rate

0 9600 baud Default
1 14400 baud
2 19200 baud
3 28800 baud
4 38400 baud
5 57600 baud
6 76800 baud Not supported by Windows!
7 115200 baud
8 230400 baud
9 250000 baud Not supported by Windows!
10 500000 baud Not supported by Windows!
11 1000000 baud Not supported by Windows!

Warning:
The highest speed for RS232 is 115200 baud limited by
the RS232 transceiver.
The RS232 might work with higher speed but out of
specification.

0… 11 RWE

66 Serial address The module (target) address for RS232/RS485. 0… 255 RWE
67 ASCII mode

Configure the TMCL ASCII interface:
Bit 0: 0 – start up in binary (normal) mode
 1 – start up in ASCII mode
Bits 4 and 5:
00 – Echo back each character
01 – Echo back complete command
10 – Do not send echo, only send command reply

 RWE

68 Serial heartbeat Serial heartbeat for the RS232/RS485 interface. If this time
limit is up and no further command is noticed the motor
will be stopped.
0 – parameter is disabled

[ms] RWE

69 CAN bit rate 2 20kBit/s
3 50kBit/s
4 100kBit/s
5 125kBit/s
6 250kBit/s
7 500kBit/s
8 1000kBit/s Default

2… 8 RWE

70 CAN reply ID The CAN ID for replies from the board (default: 2) 0..7ff RWE
71 CAN ID The module (target) address for CAN (default: 1) 0..7ff RWE
73 Configuration

EEPROM lock flag
Write: 1234 to lock the EEPROM, 4321 to unlock it.
Read: 1=EEPROM locked, 0=EEPROM unlocked.

0/1 RWE

75 Telegram pause time Pause time before the reply via RS232 or RS485 is sent. For
RS232 set to 0.
For RS485 it is often necessary to set it to 15 (for RS485
adapters controlled by the RTS pin).
For CAN interface this parameter has no effect!

0… 255 RWE

76 Serial host address Host address used in the reply telegrams sent back via
RS232 or RS485.

0… 255 RWE

77 Auto start mode 0: Do not start TMCL application after power up (default).
1: Start TMCL application automatically after power up.

0/1 RWE

TMCM-351 TMCL Firmware V4.45 Manual (Rev. 1.06 / 2014-MAY-16) 73

www.trinamic.com

Number Global parameter Description Range Acc.
80 Shutdown pin

functionality
Select the functionality of the SHUTDOWN pin
0 – no function
1 – high active
2 – low active

0… 2 RWE

81 TMCL code protection Protect a TMCL program against disassembling or
overwriting.
0 – no protection
1 – protection against disassembling
2 – protection against overwriting
3 – protection against disassembling and overwriting
If you switch off the protection against disassembling, the
program will be erased first!
Changing this value from 1 or 3 to 0 or 2, the TMCL
program will be wiped off.

0,1,2,3 RWE

82 CAN heartbeat Heartbeat for CAN interface. If this time limit is up and no
further command is noticed the motor will be stopped.
0 – parameter is disabled

[ms] RWE

83 CAN secondary
address

Second CAN ID for the module. Switched off when set to
zero.

0… 7ff RWE

84 Coordinate storage 0 – coordinates are stored in the RAM only (but can be
copied explicitly between RAM and EEPROM)
1 – coordinates are always stored in the EEPROM only

0 or 1 RWE

85 Do not store user
variables

0 – user variables are restored (default)
1 – user variables are not restored

0/1 RWE

87 Serial secondary
address

Second module (target) address for RS232 / RS485. 0… 255 RWE

128 TMCL application
status

0 –stop
1 – run
2 – step
3 – reset

0..3 R

129 Download mode 0 – normal mode
1 – download mode

0/1 R

130 TMCL program
counter

The index of the currently executed TMCL instruction. R

132 tick timer A 32 bit counter that gets incremented by one every
millisecond. It can also be reset to any start value.

 RW

133 random number Choose a random number. 0…2147483
647

R

*) With most RS485 converters that can be attached to the COM port of a PC the data direction is controlled by the

RTS pin of the COM port. Please note that this will only work with Windows 2000, Windows XP or Windows NT4,
not with Windows 95, Windows 98 or Windows ME (due to a bug in these operating systems). Another problem is
that Windows 2000/XP/NT4 switches the direction back to receive too late. To overcome this problem, set the
telegram pause time (global parameter #75) of the module to 15 (or more if needed) by issuing an SGP 75, 0, 15
command in direct mode. The parameter will automatically be stored in the configuration EEPROM.

TMCM-351 TMCL Firmware V4.45 Manual (Rev. 1.06 / 2014-MAY-16) 74

www.trinamic.com

6.2 Bank 1
The global parameter bank 1 is normally not available. It may be used for customer specific extensions of the firmware.
Together with user definable commands (see section 7.3) these variables form the interface between extensions of the
firmware (written in C) and TMCL applications.

6.3 Bank 2
Bank 2 contains general purpose 32 bit variables for the use in TMCL applications. They are located in RAM and can be
stored to EEPROM. After booting, their values are automatically restored to the RAM.

Up to 56 user variables are available.

MEANING OF THE LETTERS IN COLUMN ACCESS:
Access
type

Related
command(s)

Description

R GGP Parameter readable
W SGP, AGP Parameter writable
E STGP, RSGP Parameter stored permanently in EEPROM

Number Global parameter Description Range Access
0… 55 general purpose variable #0… #55 for use in TMCL applications -231… +231 RWE
56… 255 general purpose variables #56… #255 for use in TMCL applications -231… +231 RW

TMCM-351 TMCL Firmware V4.45 Manual (Rev. 1.06 / 2014-MAY-16) 75

www.trinamic.com

6.4 Bank 3
Bank 3 contains interrupt parameters. Some interrupts need configuration (e.g. the timer interval of a timer interrupt).
This can be done using the SGP commands with parameter bank 3 (SGP <type>, 3, <value>). The priority of an interrupt
depends on its number. Interrupts with a lower number have a higher priority.

The following table shows all interrupt parameters that can be set.

MEANING OF THE LETTERS IN COLUMN ACCESS:
Access
type

Related
command(s)

Description

R GGP Parameter readable
W SGP, AGP Parameter writable
E STGP, RSGP Parameter stored permanently in EEPROM

Number Global parameter Description Range Access
0 Timer 0 period (ms) Time between two interrupts (ms) 32 bit unsigned [ms] RWE
1 Timer 1 period (ms) Time between two interrupts (ms) 32 bit unsigned [ms] RWE
2 Timer 2 period (ms) Time between two interrupts (ms) 32 bit unsigned [ms] RWE
27 Stop left 0 trigger

transition
0=off, 1=low-high, 2=high-low, 3=both 0… 3 RWE

28 Stop right 0 trigger
transition

0=off, 1=low-high, 2=high-low, 3=both 0… 3 RWE

29 Stop left 1 trigger
transition

0=off, 1=low-high, 2=high-low, 3=both 0… 3 RWE

30 Stop right 1 trigger
transition

0=off, 1=low-high, 2=high-low, 3=both 0… 3 RWE

31 Stop left 2 trigger
transition

0=off, 1=low-high, 2=high-low, 3=both 0… 3 RWE

32 Stop right 2 trigger
transition

0=off, 1=low-high, 2=high-low, 3=both 0… 3 RWE

39 Input 0 trigger transition 0=off, 1=low-high, 2=high-low, 3=both 0… 3 RWE
40 Input 1 trigger transition 0=off, 1=low-high, 2=high-low, 3=both 0… 3 RWE
41 Input 2 trigger transition 0=off, 1=low-high, 2=high-low, 3=both 0… 3 RWE
42 Input 3 trigger transition 0=off, 1=low-high, 2=high-low, 3=both 0… 3 RWE
43 Input 4 trigger transition 0=off, 1=low-high, 2=high-low, 3=both 0… 3 RWE
44 Input 5 trigger transition 0=off, 1=low-high, 2=high-low, 3=both 0… 3 RWE
45 Input 6 trigger transition 0=off, 1=low-high, 2=high-low, 3=both 0… 3 RWE
46 Input 7 trigger transition 0=off, 1=low-high, 2=high-low, 3=both 0… 3 RWE

TMCM-351 TMCL Firmware V4.45 Manual (Rev. 1.06 / 2014-MAY-16) 76

www.trinamic.com

7 Hints and Tips
This chapter gives some hints and tips on using the functionality of TMCL, for example how to use and parameterize the
built-in reference point search algorithm.

7.1 Reference Search
The built-in reference search features switching point calibration and support of one or two reference switches. The
internal operation is based on a state machine that can be started, stopped and monitored (instruction RFS, no. 13).
The settings of the automatic stop functions corresponding to the switches (axis parameters 12 and 13) have no
influence on the reference search.

Definition of the switches
 Selecting the referencing mode (axis parameter 193): in modes 1 and 2, the motor will start by moving left

(negative position counts). In mode 3 (three-switch mode), the right stop switch is searched first to distinguish the
left stop switch from the reference switch by the order of activation when moving left (reference switch and left
limit switch share the same electrical function).

 Until the reference switch is found for the first time, the searching speed is identical to the maximum positioning
speed (axis parameter 4), unless reduced by axis parameter 194.

 After hitting the reference switch, the motor slowly moves right until the switch is released. Finally the switch is
re-entered in left direction, setting the reference point to the center of the two switching points. This low
calibrating speed is a quarter of the maximum positioning speed by default (axis parameter 195).

 In the drawings shown here the connection of the left and the right limit switch can be seen. Also the connection
of three switches as left and right limit switch and a reference switch for the reference point are shown. The
reference switch is connected in series with the left limit switch. The differentiation between the left limit switch
and the reference switch is made through software. Switches with open contacts (normally closed) are used.

 In circular systems there are no end points and thus only one reference switch is used for finding the reference
point.

left stop
switch

STOP_L

motor

traveler

STOP_R

right stop
switch

 Figure 7.1 Left and right limit switches

left stop
switch

STOP_L

motor

traveler

STOP_R

right stop
switch

negative
direction

positive
direction

 Figure 7.2 Limit switches and reference switch

motor

eccentric

STOP_L

HOME /
reference

switch

 Figure 7.3 One reference switch

TMCM-351 TMCL Firmware V4.45 Manual (Rev. 1.06 / 2014-MAY-16) 77

www.trinamic.com

7.2 Changing the Prescaler Value of an Encoder
For changing the prescaler value of an encoder, axis parameter 210 is used:

- To change the prescaler of encoder 0 use SAP 210, 0, <p>.
- To change the prescaler of encoder 1 use SAP 210, 1, <p>.
- To change the prescaler of encoder 2 use SAP 210, 2, <p>.

TO SELECT A PRESCALER, THE FOLLOWING VALUES CAN BE USED FOR <P>:

Value for <p> Resulting
prescaler

SAP command for motor 0
SAP 210, 0, <p>

Resulting steps per rotation for a 400
line (1600 quadrate count) encoder

64 0.125 SAP 210, M0, 64 200
128 0.25 SAP 210, M0, 128 400
256 0.5 SAP 210, M0, 256 800
512 1 SAP 210, M0, 512 1600
800 1.5625 SAP 210, M0, 800 2500
66144 1.6 SAP 210, M0, 66144 2560
1024 2 SAP 210, M0, 1024 3200
1600 3.125 SAP 210, M0, 1600 5000
67104 3.2 SAP 210, M0, 67104 5120
2048 4 SAP 210, M0, 2048 6400
3200 6.25 SAP 210, M0, 3200 10000
68672 6.4 SAP 210, M0, 68672 10240
4096 8 SAP 210, M0, 4096 12800
6400 12.5 SAP 210, M0, 6400 20000
71808 12.8 SAP 210, M0, 71808 20480
8192 16 SAP 210, M0, 8192 25600
78432 25.6 SAP 210, M0, 78432 40960
16384 32 SAP 210, M0, 16384 51200
32768 64 SAP 210, M0, 32768 102400

There are some special functions that can also be configured using these values. To select these functions just add the
following values to <p>:

Add to <p> Special function
16 Null channel is active high (default: null channel is active low)
8 Hold encoder value only when null channel is triggered (default: always hold encoder value)
4 Clear encoder value when null channel is triggered (default: do not clear on null channel)
2 Trigger null channel at every N signal (default: only at next N signal)
1 Add when rotating CCW, subtract when rotating CW (default: add on CW, subtract on CCW)

Example:

For a prescaler value of 4 with an active high null channel use a p-value of 2048 + 16 = 2064

FORMULA FOR RESULTING STEPS PER ROTATION:
StepsPerRotation = LinesOfEncoder * 4 * Prescaler

TMCM-351 TMCL Firmware V4.45 Manual (Rev. 1.06 / 2014-MAY-16) 78

www.trinamic.com

7.3 Stall Detection
The TMCM-351 is equipped with three TMC249 motor driver chips. These chips feature load measurement that can be
used for stall detection. Stall detection means that the motor will be stopped when the load gets too high. It is controlled
by axis parameter 205. If this parameter is set to a value between 1 and 7 the stall detection will be activated. Setting
it to 0 means that stall detection is turned off. A greater value means a higher threshold. This also depends on the motor
and on the velocity. There is no stall detection while the motor is being accelerated or decelerated.

STALL DETECTION CAN BE USED FOR FINDING THE REFERENCE POINT. THEREFORE, USE THE FOLLOWING TMCL CODE:

 SAP 205, 0, 5 //Turn on Stall Detection (use other threshold if needed)
 ROL 0, 500 //Let the motor run (or use ROR or other velocity)
Loop: GAP 3, 0
 COMP 0
 JC NE, Loop //Wait until the motor has stopped
 SAP 1, 0, 0 //Set this position as the zero position

Do not use RFS in this case.
Mixed decay should be switched off when stallGuard operational in order to get usable results.

7.4 Fixing Microstep Errors
Due to the zero crossing problem of the TMC249 stepper motor drivers, microstep errors may occur with some motors
as the minimum motor current that can be reached is slightly higher than zero (depending on the inductivity, resistance
and supply voltage of the motor).
This can be solved by setting the mixed decay threshold parameter (axis parameter number 203) to the value –1. This
switches on mixed decay permanently, in every part of the microstepping waveform. Now the minimum reachable
motor current is always near zero which gives better microstepping results.
A further optimization is possible by adapting the motor current shape. (For further information about TMCL-IDE please
refer to the TMCL reference and programming manual.)

Use SAP 203, <motor number>, -1 to turn on this feature.

7.5 Using the RS485 Interface
With most RS485 converters that can be attached to the COM port of a PC the data direction is controlled by the RTS
pin of the COM port. Please note that this will only work with Windows 2000, Windows XP or Windows NT4, not with
Windows 95, Windows 98 or Windows ME (due to a bug in these operating systems). Another problem is that Windows
2000/XP/NT4 switches the direction back to “receive” too late. To overcome this problem, set the “telegram pause
time” (global parameter #75) of the module to 15 (or more if needed) by issuing an “SGP 75, 0, 15” command in direct
mode. The parameter will automatically be stored in the configuration EEPROM.

For RS232 set the telegram pause time to zero for maximum data throughput

TMCM-351 TMCL Firmware V4.45 Manual (Rev. 1.06 / 2014-MAY-16) 79

www.trinamic.com

8 Life Support Policy
TRINAMIC Motion Control GmbH & Co. KG does not authorize or
warrant any of its products for use in life support systems, without
the specific written consent of TRINAMIC Motion Control GmbH &
Co. KG.

Life support systems are equipment intended to support or sustain
life, and whose failure to perform, when properly used in
accordance with instructions provided, can be reasonably
expected to result in personal injury or death.

© TRINAMIC Motion Control GmbH & Co. KG 2009-2014

Information given in this data sheet is believed to be accurate and
reliable. However neither responsibility is assumed for the
consequences of its use nor for any infringement of patents or
other rights of third parties, which may result from its use.

Specifications are subject to change without notice.

All trademarks used are property of their respective owners.

TMCM-351 TMCL Firmware V4.45 Manual (Rev. 1.06 / 2014-MAY-16) 80

www.trinamic.com

9 Revision History

9.1 Firmware Revision
Version Date Author Description
4.17 2009-FEB-28 OK First version supporting all TMCL features
4.28 2010-AUG-09 OK RFS start resets deviation flags, too. Thus, a reference search is stopped if an

encoder deviation is detected.
4.29 2010-OKT-31 OK Sign error in CANopen version corrected.
4.30 2010-DEC-16 OK TMCL firmware updates for other modules.
4.31 2011-APR-01 OK System control improved: every 5ms.
4.32 2011-JUN-06 OK TMCL firmware updates for other modules.
4.33 2011-JUL-27 OK Soft stop in case of contouring error enabled.
4.34 2011-SEP-09 OK TMCL firmware updates for other modules.
4.35 2011-SEP-18 OK EEPROM readout process updated.
4.36 2011-DEC-01 OK TMCL firmware updates for other modules.
4.37 2012-JAN-06 OK Axis parameter 200 (boost current) added

Positioning range enlarged: 32 Bit.
4.38 2012-MAR-15 OK Reference search adapted to 32 Bit range.
4.39 2012-APR-26 OK TMCL firmware updates for other modules.
4.40 2012-JUN-15 OK TMCL firmware updates for other modules.
4.41 2012-SEP-21 OK Global parameter 87 (secondary address for RS232/RS485) added.

Reference search: the last position before setting the counter to zero can be
read out with axis parameter 197.

4.42 2012-NOV-16 OK Axis parameter 130 (min. current) updated.
4.43 2013-FEB-20 OK Not deployed.
4.44 2013-OKT-15 OK Not deployed.
4.45 21.01.2014 OK Improved USB connection.

Improved command request target position reached.

9.2 Document Revision
Version Date Author Description

1.00 2009-MAY-29 SD Initial version
1.01 2009-JUN-26 OK Description of axis parameter 194 corrected
1.02 2009-JUL-31 SD SIO and GIO commands corrected, minor changes

1.03 2010-SEP-25 SD SIO completed (adjusting the input range), global parameter 69 (bank 0)
corrected

1.04 2012-NOV-05 SD Global Parameter 65 updated.

1.05 2012-DEC-17 SD Interrupt description added. Several axis parameters and global parameters
updated resp. added. Design changes.

1.06 2014-MAY-16 SD Firmware revision updated.

10 References
[TMCM-351] TMCM-351 Hardware Manual
[TMCL-IDE] TMCL-IDE User Manual

(see http://www.trinamic.com)

http://www.trinamic.com/

	1 Features
	2 Putting the TMCM-351 into Operation
	2.1 Starting up
	2.2 Testing with a Simple TMCL Program
	2.2.1 Testing without Encoder
	2.2.2 Testing with Encoder

	2.3 Operating the Module in Direct Mode

	3 Overview
	4 TMCL and TMCL-IDE
	4.1 Binary command format
	4.1.1 Checksum Calculation

	4.2 Reply Format
	4.2.1 Status Codes

	4.3 Standalone Applications
	4.4 TMCL Command Overview
	4.4.1 TMCL Commands
	4.4.2 Commands Listed According to Subject Area
	4.4.2.1 Motion Commands
	4.4.2.2 Parameter Commands
	4.4.2.3 I/O Port Commands
	4.4.2.4 SPI Bus Access Command
	4.4.2.5 Control Commands
	4.4.2.6 Calculation Commands
	4.4.2.7 Interrupt Commands
	4.4.2.7.1 Interrupt Types:
	4.4.2.7.2 Interrupt Processing:
	4.4.2.7.3 Interrupt Vectors:
	4.4.2.7.4 Further Configuration of Interrupts
	4.4.2.7.5 Using Interrupts in TMCL

	4.4.2.8 ASCII Commands
	4.4.2.9 TMCL Control Commands

	4.5 The ASCII Interface
	4.5.1 Command Line Format
	4.5.2 Format of a Reply
	4.5.3 Commands Used in ASCII Mode
	4.5.4 Configuring the ASCII Interface

	4.6 Commands
	4.6.1 ROR (rotate right)
	4.6.2 ROL (rotate left)
	4.6.3 MST (motor stop)
	4.6.4 MVP (move to position)
	4.6.5 SAP (set axis parameter)
	4.6.6 GAP (get axis parameter)
	4.6.7 STAP (store axis parameter)
	4.6.8 RSAP (restore axis parameter)
	4.6.9 SGP (set global parameter)
	4.6.10 GGP (get global parameter)
	4.6.11 STGP (store global parameter)
	4.6.12 RSGP (restore global parameter)
	4.6.13 RFS (reference search)
	4.6.14 SIO (set output)
	4.6.15 GIO (get input/output)
	4.6.15.1 I/O Bank 0 – Digital Inputs:
	4.6.15.2 I/O Bank 1 – Analogue Inputs:
	4.6.15.3 I/O Bank 2 – the States of Digital Outputs

	4.6.16 CALC (calculate)
	4.6.17 COMP (compare)
	4.6.18 JC (jump conditional)
	4.6.19 JA (jump always)
	4.6.20 CSUB (call subroutine)
	4.6.21 RSUB (return from subroutine)
	4.6.22 WAIT (wait for an event to occur)
	4.6.23 STOP (stop TMCL program execution)
	4.6.24 SAC (SPI bus access)
	4.6.25 SCO (set coordinate)
	4.6.26 GCO (get coordinate)
	4.6.27 CCO (capture coordinate)
	4.6.28 ACO (accu to coordinate)
	4.6.29 CALCX (calculate using the X register)
	4.6.30 AAP (accumulator to axis parameter)
	4.6.31 AGP (accumulator to global parameter)
	4.6.32 CLE (clear error flags)
	4.6.33 VECT (set interrupt vector)
	4.6.34 EI (enable interrupt)
	4.6.35 DI (disable interrupt)
	4.6.36 RETI (return from interrupt)
	4.6.37 Customer Specific TMCL Command Extension (user function)
	4.6.38 Request Target Position Reached Event
	4.6.39 BIN (return to binary mode)
	4.6.40 TMCL Control Functions

	5 Axis Parameters
	6 Global Parameters
	6.1 Bank 0
	6.2 Bank 1
	6.3 Bank 2
	6.4 Bank 3

	7 Hints and Tips
	7.1 Reference Search
	7.2 Changing the Prescaler Value of an Encoder
	7.3 Stall Detection
	7.4 Fixing Microstep Errors
	7.5 Using the RS485 Interface

	8 Life Support Policy
	9 Revision History
	9.1 Firmware Revision
	9.2 Document Revision

	10 References

