PDx-110-42 and TMCM-110

TMCL[™] Firmware Manual

Version: 1.00 2009-DEC-01

Trinamic Motion Control GmbH & Co KG Sternstraße 67 D - 20 357 Hamburg, Germany <u>http://www.trinamic.com</u>

Table of contents

1	Life sup	oport policy	4
2	Feature	S	5
3	Order c	odes	7
4	Overvie	W	8
5	Putting	the PDx-110-42 or the TMCM-110 into operation	9
	5.1 Sta	rting up	9
	5.2 Tes	sting with a simple TMCL [™] program	.11
	5.3 Op	erating the module in direct mode	.12
6	TMCL™	and TMCL-IDE	.13
	6.1 Bir	nary command format	.13
	6.2 Re	ply format	.15
	6.2.1	Status codes	.16
	6.3 Sta	Ind-alone applications	.16
	6.4 TM	CL™ command overview	.16
	6.4.1	Motion commands	.16
	6.4.2	Parameter commands	.17
	6.4.3	T/O port commands	.17
	6.4.4	Control commands	.17
	645	Calculation commands	18
	65 TM	CI™ list of commands	19
	66 Th	e ASCII interface	21
	661	Format of the command line	21
	6.6.2	Format of a reply.	.21
	6.6.3	Commands that can be used in ASCII mode	.21
	664	Configuring the ASCII interface	22
	6.7 Co	mmands	.23
	671	ROR (rotate right)	23
	672	ROI (rotate left)	24
	6.7.3	MST (motor stop)	.25
	674	MVP (move to position)	26
	675	SAP (set axis parameter)	28
	676	GAP (net axis parameter)	32
	6.7.7	STAP (store axis parameter)	. 36
	6.7.8	RSAP (restore axis parameter)	. 39
	679	SGP (set global parameter)	
	6710	GGP (net global parameter)	45
	6711	STGP (store global parameter)	<u>48</u>
	6712	RSGP (restore global parameter)	50
	6713	RFS (reference search)	52
	6.7.14	SIO (set output)	.52
	6.7.15	GIO (aet input/output)	.5%
	6.7 16	CALC (calculate)	56
	6.7 17	COMP (compare)	.57
	6718	IC (jump conditional)	58
	6.7.19	JA (jump always)	59
	6.7 20	CSUB (call subroutine)	.60
	6.7.21	RSUB (return from subroutine)	.61
	6722	WAIT (wait for an event to occur)	.62
	6723	STOP (stop TMCI™ program execution)	67
	6724	SCO (set coordinate)	64
	6725	GCO (net coordinate)	.04 65
	6726	CCO (get coordinate)	66
	6727	CALCX (calculate using the X register)	67
	6728	AAP (accumulator to axis parameter)	.07 68
	6720	AGP (accumulator to global parameter)	
	6720	(IF (clear error flags)	76
	0.7.50		.,0

6.7.3	1 Customer specific TMCL™ command extension (UFo…UF7/user function)	77
6.7.3	2 Request target position reached event	
6.7.3	3 BIN (return to binary mode)	
6.7.3	4 TMCL™ Control Functions	80
7 Axis	parameters	
7.1	Axis parameters	
8 Glob	al parameters	
8.1	Bank o	
8.2	Bank 1	
8.3	Bank 2	
9 Hints	and tips	
9.1	Reference search	
9.2	Stall detection	
9.3	Fixing microstep errors	
10 Revis	sion history	
10.1	Firmware revision	
10.2	Document revision	
11 Refe	rences	

1 Life support policy

TRINAMIC Motion Control GmbH & Co. KG does not authorize or warrant any of its products for use in life support systems, without the specific written consent of TRINAMIC Motion Control GmbH & Co. KG.

Life support systems are equipment intended to support or sustain life, and whose failure to perform, when properly used in accordance with instructions provided, can be reasonably expected to result in personal injury or death.

© TRINAMIC Motion Control GmbH & Co. KG 2009

Information given in this data sheet is believed to be accurate and reliable. However neither responsibility is assumed for the consequences of its use nor for any infringement of patents or other rights of third parties, which may result from its use.

Specifications are subject to change without notice.

2 Features

The PD-110-42 consists of an intelligent stepper motor controller and driver module mounted directly on a 42mm flange motor (NEMA 17). The TMCM-110 module converts the motor into a compact mechatronic device with bus oriented or stand-alone control. The motor, switches, power and the multipurpose I/Os can be connected via small pluggable connectors. The TMCM-110 comes with the PC based software development environment TMCL-IDE for the Trinamic Motion Control Language (TMCL™). Using predefined TMCL™ high level commands like *move to position* or *constant rotation* a rapid and fast development of motion control applications is guaranteed. The TMCM-110 can be controlled via an RS232, RS485, I²C or CAN interface (ordering option). Communication traffic is kept very low since all time critical operations, e.g. ramp calculation, are performed on board. The TMCL™ program can be stored in the on board EEPROM for stand-alone operation. The firmware of the module can be updated via the serial interface. With the integrated stallGuard[™] feature it is possible to detect motor overload or motor stall.

Electrical data

- up to 1.1A coil current RMS (1.5A peak)
- 7V to 34V motor supply voltage
- supports two phase bipolar motors with 0.3A to 1.1A coil current

PANdrive motor data

Specifications	Units	QSH4218			
Specifications		-35-10-027	-41-10-035	-51-10-049	
Rated Voltage	V	5.3	4.5	5.0	
Rated Phase Current	А	1.0	1.0	1.0	
Phase Resistance at 20°C	Ω	5.3	4.5	5.0	
Phase Inductance (typ.)	mН	6.6	7.5	8.0	
Holding Torque (tup)	Ncm	27	35	49	
Holding Torque (typ.)	oz in	38	50	69	
Detent Torque	mNm	22	25	28	
Rotor Inertia	g cm²	35	54	68	
Weight (Mass)	Kg	0.22	0.28	0.35	
Insulation Class		В	В	В	
Dielectic Strength (for one minute)	VAC	500	500	500	
Connection Wires	N°	4	4	4	
Step Angle	0	1.8	1.8	1.8	
Step angle Accuracy (max.)	%	5	5	5	
Flange Size (max.)	mm	42.3	42.3	42.3	
Motor Length (max.)	mm	33.5	38	47	
Rear shaft hole depth	mm	5.0	5.0	5.0	
Rear shaft hole diameter	mm	3.0	3.0	3.0	
Axis Diameter	mm	5.0	5.0	5.0	
Axis Length (typ.)	mm	24	24	24	
Axis D-cut (0.5mm depth)	mm	20	20	20	
Maximum Radial Force	N	29	79	20	
(20 mm from front flange)	IN	20	20	20	
Maximum Axial Force	Ν	10	10	10	
Ambient temperature	°C	-20+50	-20+50	-20+50	

Table 2.1: Motor technical data

Interface

- RS232, RS485, I²C or CAN 2.0b host interface
- 2 inputs for reference and stop switches
- 1 general purpose input and 1 output

Features

- up to 16 times microstepping
- memory for 2048 TMCL[™] commands
- automatic ramp generation in hardware
- on the fly alteration of motor parameters (e.g. position, velocity, acceleration)
- stallGuard[™] for sensorless motor stall detection
- full step frequencies up to 20kHz
- dynamic current control
- TRINAMIC driver technology: No heat sink required

Software

- stand-alone operation using TMCL[™] or remote controlled operation
- PC-based application development software TMCL-IDE included

Other

- pluggable JST connectors
- RoHS compliant

3 Order codes

Order code	Description	Dimensions [mm ³]
PD1-110-42 (-option)	PANdrive 0.27Nm	53 x 42 x 42
PD2-110-42 (-option)	PANdrive 0.35Nm	59 x 42 x 42
PD3-110-42 (-option)	PANdrive 0.49Nm	69 x 42 x 42
TMCM-110-42 (-option)	Motion control module	15 X 42 X 42
Option	Host interface	
232	RS232 interface	
485	RS485 interface	
I²C	I ² C interface (I ² C compat	ible serial 2 wire)
CAN	CAN interface	

Table 0.1: Order codes

4 Overview

As with most TRINAMIC modules the software running on the microprocessor of the TMCM-110 consists of two parts, a boot loader and the firmware itself. Whereas the boot loader is installed during production and testing at TRINAMIC and remains – normally – untouched throughout the whole lifetime, the firmware can be updated by the user. New versions can be downloaded free of charge from the TRINAMIC website (http://www.trinamic.com).

The firmware shipped with this module is related to the standard TMCL[™] firmware [TMCL] shipped with most of TRINAMIC modules with regard to protocol and commands. Corresponding, the module is based on the TMC428-I stepper motor controller and the TMC246 power driver and supports the standard TMCL[™] with a special range of values.

All commands and parameters available with this unit are explained on the following pages.

5 Putting the PDx-110-42 or the TMCM-110 into operation

Here you can find basic information for putting your PANdrive[™]/module into operation. The text contains a simple example for a TMCL[™] program and a short description of operating the module in direct mode.

The things you need:

- TMCM-110 or PDx-110-42
- Interface (RS232, RS485, I²C or CAN) suitable to your TMCM-110 option with cables
- Nominal supply voltage +24V DC (+7...+34V DC) for your module
- Motor which fits to your module, for example QSH-4218 (included in the PDx-110-42)
- TMCL-IDE program and PC

Precautions:

- Do not mix up connections or short-circuit pins.
- Avoid bounding I/O wires with motor power wires as this may cause noise picked up from the motor supply.
- Do not exceed the maximum power supply of 34V DC.
- Do not connect or disconnect the motor while powered!
- Start with power supply OFF!

5.1 Starting up

The following figure will show you which connectors have to be used.

Supply and host interface connector (1)	JST PHR-5
Motor connector (2)	JST PHR-4
Additional I/O connector (3)	JST PHR-8

1. Connect the motor with connector (2)

The pin assignment for the motor connector (2) is as follows:

Pin	Function
1	Phase A1
2	Phase Az
3	Phase B1
4	Phase B2

2. Connect the interface and the power supply with connector (1)

a. Connect the interface

The pin assignments are different for the four available options of the module:

Dim	Function			
FIN	RS232	RS485 1)	IIC	CAN ²⁾
1	GND	GND	GND	GND
2	+734V DC	+734V DC	+734V DC	+734V DC
3	GND	GND	GND	GND
4	RxD	RS485+	SCL	CAN +
5	TxD	RS485 -	SDA	CAN -

b. Connect the power supply:

Please connect the power supply as shown in the table above. *Attention: Do not exceed the maximum power supply of 34V DC!*

3. Switch ON the power supply

The power LED flashes now.

If this does not occur, switch power OFF and check your connections as well as the power supply.

4. Start the TMCL-IDE software development environment

The TMCL-IDE is available on the TechLibCD and on <u>www.trinamic.com</u>.

Installing the TMCL-IDE:

- Make sure the COM port you intend to use is not blocked by another program.
- Open TMCL-IDE by clicking *TMCL.exe*.
- Choose **Setup** and **Options** and thereafter the **Connection tab**.

• Choose COM port and type with fitting parameters (baud rate 9600 for RS232). Click OK.

🔺 Options 🛛 🔀
Assembler Connection
Type: RS232 / RS485 (COM port)
RS232 / RS485
Port: COM1 -
<u>B</u> aud: 9600 -
Address: 1 Search
<u> </u>

5.2 Testing with a simple TMCL[™] program

Open the file test2.tmc. The following source code appears on the screen:

```
A description for the TMCL<sup>™</sup> commands can be found in Appendix A.
```

//A sim	nple example for using TMCL TM	and TMCL-IDE
	ROL 0, 500 WAIT TICKS, 0, 500 MST 0	//Rotate motor 0 with speed 500
	ROR 0, 250 WAIT TICKS, 0, 500 MST 0	//Rotate motor 1 with 250
Loop:	SAP 4, 0, 500 SAP 5, 0, 50 MVP ABS, 0, 10000 WAIT POS, 0, 0 MVP ABS, 0, -10000 WAIT POS, 0, 0 JA Loop	<pre>//Set max. Velocity //Set max. Acceleration //Move to Position 10000 //Wait until position reached //Move to Position -10000 //Wait until position reached //Infinite Loop</pre>

- 1. Click on icon **Assemble** to convert the TMCL[™] into binary code.
- 2. Then download the program to the TMCM-110 module via the icon *Download*.
- 3. Press icon *Run*. The desired program will be executed.
- 4. Click **Stop** button to stop the program.

5.3 Operating the module in direct mode

1. Start TMCL[™] Direct Mode.

- 2. If the communication is established the TMCM-110 is automatically detected. If the module is not detected, please check all points above (cables, interface, power supply, COM port, baud rate).
- 3. Issue a command by choosing instruction, type (if necessary), motor, and value and click Execute to send it to the module.

TMCL Direct Mode - TMCM-10x / TMCM-11x / TMCM-140	X
TMCL Instruction Selector Instruction: 1 - ROR rotate right 0 - <don't care=""></don't>	Motor / Bank: Value: ▼ 0 - Motor 0 ▼ 0 €
Execute	Copy to editor
Manual Instruction Input Address Instruction Type Motor/Bank Value 1 € 0 € 0 €	Datagram: 01 00 00 00 00 00 00 00 01
Execute	
Answer Host Target Status Instr. Value	Datagram:
	Close

Examples:

- ROR rotate right, motor 0, value 500
- -> Click Execute. The first motor is rotating now.
- MST motor stop, motor o
- -> Click Execute. The first motor stops now.

-	

Please use the TMCL-IDE axis parameter calculation tool for getting best values.

6 TMCL[™] and TMCL-IDE

The TMCM-110 module supports TMCL[™] direct mode (binary commands or ASCII interface) and stand-alone TMCL[™] program execution. You can store up to 2048 TMCL[™] instructions on it.

In direct mode the TMCL[™] communication over RS232, RS485, I²C and CAN follows a strict master/slave relationship. That is, a host computer (e.g. PC/PLC) acting as the interface bus master will send a command to the module. The TMCL[™] interpreter on it will then interpret this command, do the initialization of the motion controller, read inputs and write outputs or whatever is necessary according to the specified command. As soon as this step has been done, the module will send a reply back over RS232/RS485/I²C/CAN to the bus master. The master should not transfer the next command till then. Normally, the module will just switch to transmission and occupy the bus for a reply, otherwise it will stay in receive mode. It will not send any data over the interface without receiving a command first. This way, any collision on the bus will be avoided when there are more than two nodes connected to a single bus.

The Trinamic Motion Control Language (TMCLTM) provides a set of structured motion control commands. Every motion control command can be given by a host computer or can be stored in an EEPROM on the TMCM-110 to form programs that run stand-alone on the module. For this purpose there are not only motion control commands but also commands to control the program structure (like conditional jumps, compare and calculating).

Every command has a binary representation and a mnemonic:

- The binary format is used to send commands from the host to a module in direct mode.
- The mnemonic format is used for easy usage of the commands when developing stand-alone TMCL[™] applications with the TMCL-IDE (IDE means *Integrated Development Environment*).

There is also a set of configuration variables for the axis and for global parameters which allow individual configuration of nearly every function of a module. This manual gives a detailed description of all TMCL[™] commands and their usage.

6.1 Binary command format

Every command has a mnemonic and a binary representation. When commands are sent from a host to a module, the binary format has to be used. Every command consists of a one-byte command field, a one-byte type field, a one-byte motor/bank field and a four-byte value field. So the binary representation of a command always has seven bytes.

When a command is to be sent via RS232 interface, it has to be enclosed by an address byte at the beginning and a checksum byte at the end. In this case it consists of nine bytes.

This is different when communicating takes place via the CAN bus. Address and checksum are included in the CAN standard and do not have to be supplied by the user.

When using I²C bus, the module address is omitted because it is handled by I²C itself.

14

The binary command format for RS232 and RS485 is as follows:

Bytes	Meaning
1	Module address
1	Command number
1	Type number
1	Motor or Bank number
4	Value (MSB first!)
1	Checksum

- The checksum is calculated by adding up all the other bytes using an 8-bit addition.
- When using the CAN bus, just leave out the first byte (module address) and the last byte (checksum).
- When using I²C bus, the module address is omitted because it is handled by I²C itself.

Checksum calculation

As mentioned above, the checksum is calculated by adding up all bytes (including the module address byte) using 8-bit addition. Here are two examples to show how to do this:

```
in C:
unsigned char i, Checksum;
unsigned char Command[9];
//Set the "Command" array to the desired command
Checksum = Command[0];
for (i=1; i<8; i++)
Checksum+=Command[i];
Command[8]=Checksum; //insert checksum as last byte of the command
//Now, send it to the module
in Delph:
var
i, Checksum: byte;
Command: array[0..8] of byte;
//Set the "Command" array to the desired command
```

//Calculate the Checksum: Checksum:=Command[0]; for i:=1 to 7 do Checksum:=Checksum+Command[i]; Command[8]:=Checksum; //Now, send the "Command" array (9 bytes) to the module

6.2 Reply format

Every time a command has been sent to a module, the module sends a reply.

The reply format for RS232 and RS485 is as follows:

Bytes	Meaning
1	Reply address
1	Module address
1	Status (e.g. 100 means <i>no error</i>)
1	Command number
4	Value (MSB first!)
1	Checksum

- The checksum is also calculated by adding up all the other bytes using an 8-bit addition.
- When using CAN bus, the first byte (reply address) and the last byte (checksum) are left out.
- When using I²C bus, the module address is omitted because it is handled by I²C itself.
- Do not send the next command before you have received the reply!

6.2.1 Status codes

The reply contains a status code.

The status code can have one of the following values:

Code	Meaning
100	Successfully executed, no error
101	Command loaded into TMCL™
	program EEPROM
1	Wrong checksum
2	Invalid command
3	Wrong type
4	Invalid value
5	Configuration EEPROM locked
6	Command not available

6.3 Stand-alone applications

The module is equipped with an EEPROM for storing TMCL™ applications. You can use the TMCL-IDE for developing stand-alone TMCL™ applications. You can load your program down into the EEPROM and then they will run on the module. The TMCL-IDE contains an *editor* and a TMCL™ *assembler* where the commands can be entered using their mnemonic format. They will be assembled automatically into their binary representations. Afterwards this code can be downloaded into the module to be executed there.

6.4 TMCL[™] command overview

In this section a short overview of the TMCL[™] commands is given.

6.4.1 Motion commands

These commands control the motion of the motor. They are the most important commands and can be used in direct mode or in stand-alone mode.

Mnemonic	Command number	Meaning
ROL	2	Rotate left
ROR	1	Rotate right
MVP	4	Move to position
MST	3	Motor stop
RFS	13	Reference search
SCO	30	Store coordinate
CCO	32	Capture coordinate
GCO	31	Get coordinate

6.4.2 Parameter commands

These commands are used to set, read and store axis parameters or global parameters. Axis parameters can be set independently for the axis, whereas global parameters control the behavior of the module itself. These commands can also be used in direct mode and in stand-alone mode.

Mnemonic	Command number	Meaning
SAP	5	Set axis parameter
GAP	6	Get axis parameter
STAP	7	Store axis parameter into EEPROM
RSAP	8	Restore axis parameter from EEPROM
SGP	9	Set global parameter
GGP	10	Get global parameter
STGP	11	Store global parameter into EEPROM
RSGP	12	Restore global parameter from EEPROM

6.4.3 I/O port commands

These commands control the external I/O ports and can be used in direct mode and in stand-alone mode.

Mnemonic	Command number	Meaning
SIO	14	Set output
GIO	15	Get input

6.4.4 Control commands

These commands are used to control the program flow (loops, conditions, jumps etc.). It does not make sense to use them in direct mode. They are intended for stand-alone mode only.

Mnemonic	Command number	Meaning	
JA	22	Jump always	
JC	21	Jump conditional	
COMP	20	Compare accumulator with constant	
		value	
CLE	36	Clear error flags	
CSUB	23	Call subroutine	
RSUB	24	Return from subroutine	
WAIT	27	Wait for a specified event	
STOP	28	End of a TMCL™ program	

6.4.5 Calculation commands

These commands are intended to be used for calculations within TMCL[™] applications. **Although they could also be used in direct mode it does not make much sense to do so.**

Mnemonic	Command number	Meaning
CALC	19	Calculate using the accumulator and a constant value
CALCX	33	Calculate using the accumulator and the X register
AAP	34	Copy accumulator to an axis parameter
AGP	35	Copy accumulator to a global parameter

For calculating purposes there is an accumulator (or accu or A register) and an X register. When executed in a TMCL[™] program (in stand-alone mode), all TMCL[™] commands that read a value store the result in the accumulator. The X register can be used as an additional memory when doing calculations. It can be loaded from the accumulator.

When a command that reads a value is executed in direct mode the accumulator will not be affected. This means that while a TMCL[™] program is running on the module (stand-alone mode), a host can still send commands like GAP, GGP or GIO to the module (e.g. to query the actual position of the motor) without affecting the flow of the TMCL[™] program running on the module.

6.5 TMCL[™] List of commands

The following TMCL[™] commands are currently supported:

Command	Number	Parameter	Description
ROR	1	<motor number="">, <velocity></velocity></motor>	Rotate right with specified velocity
ROL	2	<motor number="">, <velocity></velocity></motor>	Rotate left with specified velocity
MST	3	<motor number=""></motor>	Stop motor movement
MVP	4	ABS REL COORD, <motor number>, <position offset></position offset></motor 	Move to position (absolute or relative)
SAP	5	<parameter>, <motor number="">, <value></value></motor></parameter>	Set axis parameter (motion control specific settings)
GAP	6	<parameter>, <motor number=""></motor></parameter>	Get axis parameter (read out motion control specific settings)
STAP	7	<parameter>, <motor number=""></motor></parameter>	Store axis parameter permanently (non volatile)
RSAP	8	<parameter>; <motor number=""></motor></parameter>	Restore axis parameter
SGP	9	<parameter>, <bank number="">, <value></value></bank></parameter>	Set global parameter (module specific settings, e.g. communication settings, or TMCL™ user variables)
GGP	10	<parameter>, <bank number=""></bank></parameter>	Get global parameter (read out module specific settings e.g. communication settings, or TMCL™ user variables)
STGP	11	<parameter>, <bank number=""></bank></parameter>	Store global parameter (TMCL™ user variables only)
RSGP	12	<parameter>, <bank></bank></parameter>	Restore global parameter (TMCL™ user variables only)
RFS	13	START STOP STATUS, <motor number></motor 	Reference search
SIO	14	<port number="">, <bank number="">, <value></value></bank></port>	Set digital output to specified value
GIO	15	<port number="">, <bank number=""></bank></port>	Get value of analogue/digital input
CALC	19	<operation>, <value></value></operation>	Process accumulator & value
COMP	20	<value></value>	Compare accumulator <-> value
JC	21	<condition>, <jump address=""></jump></condition>	Jump conditional
JA	22	<jump address=""></jump>	Jump absolute
CSUB	23	<subroutine address=""></subroutine>	Call subroutine
RSUB	24		Return from subroutine
WAIT	27	<condition>, <motor number="">, <ticks></ticks></motor></condition>	Wait with further program execution
STOP	28		Stop program execution
SCO	30	<pre><coordinate number="">, <motor number="">, <pre>coordinate</pre></motor></coordinate></pre>	Set coordinate

Command	Number	Parameter	Description
GCO	31	<coordinate number="">, <motor number></motor </coordinate>	Get coordinate
ССО	32	<coordinate number="">, <motor number></motor </coordinate>	Capture coordinate
CALCX	33	<operation></operation>	Process accumulator & X-register
AAP	34	<parameter>, <motor number=""></motor></parameter>	Accumulator to axis parameter
AGP	35	<parameter>, <bank></bank></parameter>	Accumulator to global parameter

TMCL[™] control commands:

Instruction	Description	Туре	Mot/Bank	Value
128 – stop application	a running TMCL™ standalone application is stopped	(don't care)	(don't care)	(don't care)
129 – run application	TMCL [™] execution is started (or	o - run from	(don't care)	(don't care)
	continued)	current address		
		1 - run from		starting address
120 - step application	only the next command of a	(don't care)	(don't care)	(don't care)
	TMCL [™] application is executed			
131 – reset application	the program counter is set to zero, and the standalone application is stopped (when running or stepped)	(don't care)	(don't care)	(don't care)
132 – start download mode	target command execution is stopped and all following commands are transferred to the TMCL™ memory	(don't care)	(don't care)	starting address of the application
133 – quit download mode	target command execution is resumed	(don't care)	(don't care)	(don't care)
134 – read TMCL™	the specified program memory	(don't care)	(don't care)	<memory< td=""></memory<>
memory	location is read			address>
135 – get application status	one of these values is returned: o – stop	(don't care)	(don't care)	(don't care)
	1 – run			
	2 – step			
	3 – reset			
136 – get firmware	return the module type and	o – string	(don't care)	(don't care)
version	firmware revision either as a	1 – binary		
	string or in binary format			
137 – restore factory settings	reset all settings stored in the EEPROM to their factory defaults This command does not send	(don't care)	(don't care)	must be 1234
4.00	раска герцу.			
138 - reserved	-			
139 – enter ASCII mode	Enter ASCII command line (see chapter 6.6)	(don't care)	(don't care)	(don't care)

6.6 The ASCII interface

TMCL[™] also offers an ASCII interface that can be used to communicate with the module and to send some commands as text strings.

- The ASCII command line interface is entered by sending the binary command 139 (enter ASCII mode).
- Afterwards the commands are entered as in the TMCL-IDE. Please note that only those commands, which can be used in direct mode, also can be entered in ASCII mode.
- For leaving the ASCII mode and re-enter the binary mode enter the command BIN.

6.6.1 Format of the command line

As the first character, the address character has to be sent. The address character is A when the module address is 1, B for modules with address 2 and so on. After the address character there may be spaces (but this is not necessary). Then, send the command with its parameters. At the end of a command line a <CR> character has to be sent.

Here are some examples for valid command lines:

```
AMVP ABS, 0, 50000
A MVP ABS, 0, 50000
AROL 2, 500
A MST 0
ABIN
```

These command lines would address the module with address 1. To address e.g. module 3, use address character C instead of A. The last command line shown above will make the module return to binary mode.

6.6.2 Format of a reply

After executing the command the module sends back a reply in ASCII format. This reply consists of:

- the address character of the host (host address that can be set in the module)
- the address character of the module
- the status code as a decimal number
- the return value of the command as a decimal number
- a <CR> character

So, after sending AGAP 0, 1 the reply would be BA 100 -5000 if the actual position of axis 1 is -5000, the host address is set to 2 and the module address is 1. The value 100 is the status code 100 that means command successfully executed.

6.6.3 Commands that can be used in ASCII mode

The following commands can be used in ASCII mode: ROL, ROR, MST, MVP, SAP, GAP, STAP, RSAP, SGP, GGP, STGP, RSGP, RFS, SIO, GIO, SAC, SCO, GCO, CCO, UFo, UF1, UF2, UF3, UF4, UF5, UF6, and UF7.

There are also special commands that are only available in ASCII mode:

- BIN: This command quits ASCII mode and returns to binary TMCL[™] mode.
- RUN: This command can be used to start a TMCL[™] program in memory.
- STOP: Stops a running TMCL[™] application.

6.6.4 Configuring the ASCII interface

The module can be configured so that it starts up either in binary mode or in ASCII mode. **Global** *parameter 67 is used for this purpose* (please see also chapter 8.1). Bit o determines the startup mode: if this bit is set, the module starts up in ASCII mode, else it will start up in binary mode (default). Bit 4 and Bit 5 determine how the characters that are entered are echoed back. Normally, both bits are set to zero. In this case every character that is entered is echoed back when the module is addressed. Character can also be erased using the backspace character (press the backspace key in a terminal program). When bit 4 is set and bit 5 is clear the characters that are entered are not echoed back immediately but the entire line will be echoed back after the <CR> character has been sent. When bit 5 is set and bit 4 is clear there will be no echo, only the reply will be sent.

6.7 Commands

The module specific commands are explained in more detail on the following pages. They are listed according to their command number.

6.7.1 ROR (rotate right)

With this command the motor will be instructed to rotate with a specified velocity in *right* direction (increasing the position counter).

Internal function: First, velocity mode is selected. Then, the velocity value is transferred to axis parameter **#**0 (*target velocity*).

The module is based on the TMC428-I stepper motor controller and the TMC246 power driver. This makes possible choosing a velocity between 0 and 2047.

Related commands: ROL, MST, SAP, GAP

Mnemonic: ROR <motor number>, <velocity>

Binary representation:

INSTRUCTION NO.	TYPE	MOT/BANK	VALUE
1	(don't care)	0*	<velocity></velocity>
			0 2047

* Motor number is always 0 as only one motor is involved.

Reply in direct mode:

STATUS	VALUE
100 – OK	(don't care)

Example:

Rotate right, velocity = 350 Mnemonic: ROR 0, 350

Byte Index	0	1	2	3	4	5	6	7	8
Function	Target-	Instruction	Туре	Motor/	Operand	Operand	Operand	Operand	Checksum
	address	Number		Bank	Byte3	Bytez	Byte1	Byteo	
Value (hex)	\$01	\$01	\$00	\$00	\$00	\$00	\$01	\$5e	\$61

6.7.2 ROL (rotate left)

With this command the motor will be instructed to rotate with a specified velocity (opposite direction compared to ROR, decreasing the position counter).

Internal function: First, velocity mode is selected. Then, the velocity value is transferred to axis parameter **#**0 (*target velocity*).

The module is based on the TMC428-I stepper motor controller and the TMC246 power driver. This makes possible choosing a velocity between 0 and 2047.

Related commands: ROR, MST, SAP, GAP

Mnemonic: ROL <motor number>, <velocity>

Binary representation:

INSTRUCTION NO.	ТҮРЕ	MOT/BANK	VALUE
2	(don't care)	0*	<velocity></velocity>
			0 2047

* Motor number is always 0 as only one motor is involved.

Reply in direct mode:

STATUS	VALUE
100 - OK	(don't care)

Example:

Rotate left, velocity = 1200 Mnemonic: ROL 0, 1200

Byte Index	0	1	2	3	4	5	6	7	8
Function	Target-	Instruction	Туре	Motor/	Operand	Operand	Operand	Operand	Checksum
	address	Number		Bank	Byte3	Bytez	Byte1	Byteo	
Value (hex)	\$01	\$01	\$00	\$00	\$00	\$oo	\$04	\$bo	\$b6

6.7.3 MST (motor stop)

With this command the motor will be instructed to stop with deceleration ramp (soft stop). For information about hard stops refer to chapter 9 (hints and tips) please.

Internal function: The axis parameter *target velocity* is set to zero.

Related commands: ROL, ROR, SAP, GAP

Mnemonic: MST <motor number>

Binary representation:

INSTRUCTION NO.	TYPE	MOT/BANK	VALUE
3	(don't care)	0*	(don't care)

* Motor number is always 0 as only one motor is involved.

Reply in direct mode:

STATUS	VALUE
100 - OK	(don't care)

Example:

Stop motor Mnemonic: MST o

Byte Index	0	1	2	3	4	5	6	7	8
Function	Target-	Instruction	Туре	Motor/	Operand	Operand	Operand	Operand	Checksum
	address	Number		Bank	Byte3	Bytez	Byte1	Byteo	
Value (hex)	\$01	\$o3	\$00	\$00	\$00	\$00	\$oo	\$oo	\$04

6.7.4 MVP (move to position)

With this command the motor will be instructed to move to a specified relative or absolute position or a pre-programmed coordinate. It will use the acceleration/deceleration ramp and the positioning speed programmed into the unit. This command is non-blocking – that is, a reply will be sent immediately after command interpretation and initialization of the motion controller. Further commands may follow without waiting for the motor reaching its end position. The maximum velocity and acceleration are defined by axis parameters #4 and #5.

Three operation types are available:

- Moving to an absolute position in the range from 8388608 to +8388607 (-2²³ to+2²³-1).
- Starting a relative movement by means of an offset to the actual position. In this case, the new resulting position value must not exceed the above mentioned limits, too.
- Moving the motor to a (previously stored) coordinate (refer to SCO for details).

Please note, that the distance between the actual position and the new one should not be more than 8388607 microsteps. Otherwise the motor will run in the wrong direction for taking a shorter way. If the value is exactly 8388608 the motor maybe stops.

Internal function: A new position value is transferred to the axis parameter #2 *target position*.

Related commands: SAP, GAP, SCO, CCO, GCO, and MST

Mnemonic: MVP <ABS|REL|COORD>, <motor number>, <position|offset|coordinate number>

Binary representation:

INSTRUCTION NO.	ТҮРЕ	MOT/BANK	VALUE	
4	o ABS – absolute	0*	<position></position>	
	1 REL – relative	0*	<offset></offset>	
	2 COORD –	0*	<coordinate number<="" th=""></coordinate>	
	coordinate		(020)	

* Motor number is always 0 as only one motor is involved.

Reply in direct mode:

STATUS	VALUE
100 - OK	(don't care)

Example MVP ABS:

Move motor to (absolute) position 9000 *Mnemonic:* MVP ABS, 0, 9000

Byte Index	0	1	2	3	4	5	6	7	8
Function	Target-	Instruction	Туре	Motor/	Operand	Operand	Operand	Operand	Checksum
	address	Number		Bank	Byte3	Bytez	Byte1	Byteo	
Value (hex)	\$01	\$04	\$00	\$00	\$00	\$00	\$23	\$28	\$50

Example MVP REL:

Move motor from current position 1000 steps backward (move relative -1000) Mnemonic: MVP REL, 0, -1000

Binary:

Byte Index	ο	1	2	3	4	5	6	7	8
Function	Target-	Instruction	Type	Motor/	Operand	Operand	Operand	Operand	Checksum
	address	Number		Bank	Byte3	Bytez	Byte1	Byteo	
Value (hex)	\$01	\$04	\$01	\$00	\$ff	\$ff	\$fc	\$18	\$18

Examples MVP COORD:

Move motor to previously stored coordinate #8 Mnemonic: MVP COORD, o, 8

Binary:

Byte Index	0	1	2	3	4	5	6	7	8
Function	Target-	Instruction	Туре	Motor/	Operand	Operand	Operand	Operand	Checksum
	address	Number		Bank	Byte3	Bytez	Byteı	Byteo	
Value (hex)	\$01	\$04	\$02	\$00	\$00	\$00	\$00	\$08	\$of

It is possible to use stall detection. Please see section 9.2 for details.

When moving to a coordinate, the coordinate has to be set properly in advance with the help of the SCO command (see 6.7.24).

6.7.5 SAP (set axis parameter)

With this command most of the motion control parameters of the module can be specified. The settings will be stored in SRAM and therefore are volatile. That is, information will be lost after power off. *Please use command STAP (store axis parameter) in order to store any setting permanently.*

Internal function: The parameter format is converted ignoring leading zeros (or ones for negative values). The parameter is transferred to the correct position in the appropriate device.

Related commands: GAP, STAP, RSAP, AAP

Mnemonic: SAP <parameter number>, <motor number>, <value>

Binary representation:

INSTRUCTION NO.	ТҮРЕ	MOT/BANK	VALUE
5	<parameter< td=""><td>0*</td><td><value></value></td></parameter<>	0*	<value></value>
	number>		

* Motor number is always 0 as only one motor is involved.

Reply in direct mode:

STATUS	VALUE	
100 - OK	(don't care)	

List of parameters, which can be used for SAP:

Please note, that for the binary representation cparameter number> has to be filled with the number
and the <value> has to be filled with a value from range.

Number	Axis Parameter	Description	Range [Unit]
0	target (next)	The desired position in position mode (see	+ 2 ²³
°	position	ramp mode. no. 138).	[usteps]
1	actual position	The current position of the motor. Should only be overwritten for reference point setting.	± 2 ²³ [µsteps]
2	target (next) speed	The desired speed in velocity mode (see ramp mode, no. 138). In position mode, this parameter is set by hardware: to the maximum speed during acceleration, and to zero during deceleration and rest.	$\frac{\pm 2047}{\left[\frac{16MHz}{65536} \cdot 2^{PD} \frac{\mu steps}{sec}\right]}$
3	actual speed	The current rotation speed.	$\frac{\pm 2047}{\left[\frac{16MHz}{65536} \cdot 2^{PD} \frac{\mu steps}{sec}\right]}$
4	maximum positioning speed	Should not exceed the physically highest possible value. Adjust the pulse divisor (no. 154), if the speed value is very low (<50) or above the upper limit. See TMC 428 datasheet for calculation of physical units.	$\frac{02047}{\left[\frac{16MHz}{65536} \cdot 2^{PD} \frac{\mu steps}{sec}\right]}$
5	maximum acceleration	The limit for acceleration (and deceleration). Changing this parameter requires re- calculation of the acceleration factor (no. 146) and the acceleration divisor (no. 137), which is done automatically. See TMC 428 datasheet for calculation of physical units.	$\begin{array}{c} 0 \ 2047 \\ \left[\frac{16 \text{MHz}}{65536} \cdot 2^{\text{PD}} \frac{\mu \text{steps}}{\text{sec}} \right] \end{array}$
6	absolute max. current	The most important motor setting, since too high values might cause motor damage! The maximum value is 255 (which mean 100% of the maximum current of the module).	0 1500 [mA]

Number	Axis Parameter	Description	Range [Unit]
7	standby current	The current limit two seconds after the motor has stopped.	0 1500 [mA]
12	right limit switch disable	If set, deactivates the stop function of the right switch	0/1
13	left limit switch disable	Deactivates the stop function of the left switch resp. reference switch if set.	0/1
130	minimum speed	Should always be set 1 to ensure exact reaching of the target position. Normally no need to change!	$\frac{\textbf{02047}}{\left[\frac{16MHz}{65536} \cdot 2^{PD} \frac{\mu steps}{sec}\right]}$
138	ramp mode	Automatically set when using ROR, ROL, MST and MVP. o: position mode. Steps are generated, when the parameters actual position and target position differ. Trapezoidal speed ramps are provided. 2: velocity mode. The motor will run continuously and the speed will be changed with constant (maximum) acceleration, if the parameter <i>target speed</i> is changed. For special purposes, the soft mode (value 1)	0/1/2
		with exponential decrease of speed can be selected.	
140	microstep resolution	 o - full step*) 1 - half step*) 2 - 4 microsteps 3 - 8 microsteps 4 - 16 microsteps 5 - 32 microsteps**) 6 - 64 microsteps**) Note that modifying this parameter will affect the rotation speed in the same relation: *) The full-step setting and the half-step setting are not optimized for use without an adapted microstepping table. These settings just step through the microstep table in steps of 64 respectively 32. To get real full stepping use axis parameter 211 or load an adapted microstepping table. **) If the module is specified for 16 microsteps only, switching to 32 or 64 microsteps brings an enhancement in resolution and smoothness. The position counter will use the full resolution, but, however, the motor will resolve a maximum of 24 different microsteps only for the 32 or 64 microstep units. 	O6
141	ref. switch tolerance	For three-switch mode: a position range, where an additional switch (connected to the REFL input) won't cause motor stop. See section 9.1 for details.	04095
149	soft stop flag	If cleared, the motor will stop immediately (disregarding motor limits), when the reference or limit switch is hit.	0/1
153	ramp divisor	The exponent of the scaling factor for the ramp generator- should be de/incremented carefully (in steps of one).	013

Number	Axis Parameter	Description	Range [Unit]
154	pulse divisor	The exponent of the scaling factor for the	013
		pulse (step) generator – should be	
193	referencing mode	 1 - Only the left reference switch is searched. 2 - The right switch is searched and afterwards the left switch is searched. 3 - Three-switch-mode: the right switch is searched first and afterwards the reference switch will be searched. 	1/2/3
		Please see chapter 6.7.13 for details on reference search.	
194	referencing search speed	For the reference search this value specifies the search speed as a fraction of the maximum velocity: o – full speed 1 – half of the maximum speed 2 – a quarter of the maximum speed 3 – 1/8 of the maximum speed (etc.)	o8
195	referencing switch speed	Similar to parameter no. 194, the speed for the switching point calibration can be selected.	08
203	mixed decay threshold	If the actual velocity is above this threshold, mixed decay will be used. This can also be set to -1 which turns on mixed decay permanently also in the rising part of the microstep wave. This can be used to fix microstep errors.	02048 or -1 $\left[\frac{16MHz}{65536} \cdot 2^{PD} \frac{\mu steps}{sec}\right]$
204	freewheeling	Time after which the power to the motor will be cut when its velocity has reached zero.	065535 0 = never [msec]
205	stall detection threshold	Stall detection threshold. Set it to 0 for no stall detection or to a value between 1 (low threshold) and 7 (high threshold). The motor will be stopped if the load value exceeds the stall detection threshold. Switch off mixed decay to get usable results.	07
211	fullstep threshold	When exceeding this speed the driver will switch to real full step mode. To disable this feature set this parameter to zero or to a value greater than 2047. Setting a full step threshold allows higher motor torque of the motor at higher velocity. When experimenting with this in a given application, try to reduce the motor current in order to be able to reach a higher motor velocity!	02048 $\left[\frac{16\text{MHz}}{65536} \cdot 2^{\text{PD}} \frac{\mu \text{steps}}{\text{sec}}\right]$
214	power down delay	Standstill period before the current is changed down to standby current. The standard value is 200 (value equates 2000msec).	1 65535 [10msec]

Please use the TMCL-IDE axis parameter calculation tool for getting best values.

Example:

Set the absolute maximum current to 200mA *Mnemonic:* SAP 6, 0, 200

Byte Index	0	1	2	3	4	5	6	7	8
Function	Target-	Instruction	Туре	Motor/	Operand	Operand	Operand	Operand	Checksum
	address	Number		Bank	Byte3	Bytez	Byte1	Byteo	
Value (hex)	\$01	\$05	\$06	\$00	\$00	\$00	\$oo	\$c8	\$d4

6.7.6 GAP (get axis parameter)

Most parameters of the TMCM-110 can be adjusted individually. With this parameter they can be read out. In stand-alone mode the requested value is also transferred to the accumulator register for further processing purposes (such as conditioned jumps). In direct mode the value read is only output in the *value* field of the reply (without affecting the accumulator).

Internal function: The parameter is read out of the correct position in the appropriate device. The parameter format is converted adding leading zeros (or ones for negative values).

Related commands: SAP, STAP, AAP, RSAP

Mnemonic: GAP <parameter number>, <motor number>

Binary representation:

INSTRUCTION NO.	ТҮРЕ	MOT/BANK	VALUE	
6	<parameter number=""></parameter>	<motor number="">*</motor>	(don't care)	
* Notes souther is always O as and, and material invalue 1				

* Motor number is always 0 as only one motor is involved.

Reply in direct mode:

STATUS	VALUE	
100 - OK	(don't care)	

List of parameters, which can be used for GAP:

Number	Axis Parameter	Description	Range [Unit]
0	target (next) position	The desired position in position mode (see ramp mode, no. 138).	± 2 ²³ [µsteps]
1	actual position	The current position of the motor. Should only be overwritten for reference point setting.	± 2 ²³ [µsteps]
2	target (next) speed	The desired speed in velocity mode (see ramp mode, no. 138). In position mode, this parameter is set by hardware: to the maximum speed during acceleration, and to zero during deceleration and rest.	$\frac{\pm 2047}{\left[\frac{16MHz}{65536} \cdot 2^{PD} \frac{\mu steps}{sec}\right]}$
3	actual speed	The current rotation speed.	$\frac{\pm 2047}{\begin{bmatrix} 16 \text{MHz} \\ 65536 \end{bmatrix}} \cdot 2^{\text{PD}} \frac{\text{\mu steps}}{\text{sec}}$
4	maximum positioning speed	Should not exceed the physically highest possible value. Adjust the pulse divisor (no. 154), if the speed value is very low (<50) or above the upper limit. See TMC 428 datasheet for calculation of physical units.	$02047 \begin{bmatrix} \frac{16\text{MHz}}{65536} \cdot 2^{\text{PD}} \frac{\mu \text{steps}}{\text{sec}} \end{bmatrix}$
5	maximum acceleration	The limit for acceleration (and deceleration). Changing this parameter requires re- calculation of the acceleration factor (no. 146) and the acceleration divisor (no. 137), which is done automatically. See TMC 428 datasheet for calculation of physical units.	$\begin{array}{c} 0 \ 2047 \\ \left[\frac{16 \text{MHz}}{65536} \cdot 2^{\text{PD}} \frac{\mu \text{steps}}{\text{sec}} \right] \end{array}$
6	absolute max. current	The most important motor setting, since too high values might cause motor damage! The maximum value is 255 (which mean 100% of the maximum current of the module).	0 1500 [mA]
7	standby current	The current limit two seconds after the motor has stopped.	0 1500 [mA]

Number	Axis Parameter	Description	Range [Unit]
8	target pos. reached	Indicates that the actual position equals the target position.	0/1
9	ref. switch status	The logical state of the reference (left) switch. See the TMC 428 data sheet for the different switch modes. The default has two switch modes: the left switch as the reference switch, the right switch as a limit (stop) switch.	0/1
10	right limit switch status	The logical state of the (right) limit switch.	0/1
11	left limit switch status	The logical state of the left limit switch (in three switch mode)	0/1
12	right limit switch disable	If set, deactivates the stop function of the right switch	0/1
13	left limit switch disable	Deactivates the stop function of the left switch resp. reference switch if set.	0/1
130	minimum speed	Should always be set 1 to ensure exact reaching of the target position. Normally no need to change!	$\frac{\textbf{02047}}{\left[\frac{16MHz}{65536} \cdot 2^{PD} \frac{\mu steps}{sec}\right]}$
135	actual acceleration	The current acceleration (read only).	0 2047*
138	ramp mode	Automatically set when using ROR, ROL, MST and MVP. o: position mode. Steps are generated, when the parameters actual position and target position differ. Trapezoidal speed ramps are provided. 2: velocity mode. The motor will run continuously and the speed will be changed with constant (maximum) acceleration, if the parameter <i>target speed</i> is changed. For special purposes, the soft mode (value 1) with exponential decrease of speed can be selected.	0/1/2

Number	Axis Parameter	Description	Range [Unit]
140	microstep	o – full step*)	06
	resolution	1 – half step*)	
		2 – 4 microsteps	
		3 – 8 microsteps	
		4 – 16 microsteps	
		5 – 32 microsteps**)	
		6 – 64 microsteps**)	
		Note that modifying this parameter will affect	
		the rotation speed in the same relation:	
		*) The full-step setting and the half-step	
		setting are not optimized for use without an	
		adapted microstepping table. These settings	
		of C respectively 22. To get real full stepping	
		of 64 respectively 32. To get real full stepping	
		microstopping table	
		**) If the module is specified for 16	
		microsteps only switching to 32 or 64	
		microsteps brings an enhancement in	
		resolution and smoothness. The position	
		counter will use the full resolution, but,	
		however, the motor will resolve a maximum	
		of 24 different microsteps only for the 32 or	
		64 microstep units.	
141	ref. switch	For three-switch mode: a position range,	04095
	tolerance	where an additional switch (connected to the	
		REFL input) won't cause motor stop. See	
		section 9.1 for details.	
149	soft stop flag	If cleared, the motor will stop immediately	0/1
		(disregarding motor limits), when the	
152	rama divisor	The expense of the scaling factor for the	0.12
153		ramp generator, should be delingremented	013
		carefully (in steps of one).	
154	pulse divisor	The exponent of the scaling factor for the	013
5.	1	pulse (step) generator – should be	
		de/incremented carefully (in steps of one).	
193	referencing	1 – Only the left reference switch is searched.	1/2/3
	mode	2 – The right switch is searched and	
		afterwards the left switch is searched.	
		3 – Three-switch-mode: the right switch is	
		searched first and afterwards the reference	
		Switch will be searched.	
		reference search	
10/	referencing	For the reference search this value specifies	0.8
±74	search speed	the search speed as a fraction of the	00
	Search Speed	maximum velocity:	
		o – full speed	
		1 – half of the maximum speed	
		2 – a quarter of the maximum speed	
		3 – 1/8 of the maximum speed (etc.)	
195	referencing	Similar to parameter no. 194, the speed for	08
	switch speed	the switching point calibration can be	
		selected.	

Number	Axis Parameter	Description	Range [Unit]
203	mixed decay threshold	If the actual velocity is above this threshold, mixed decay will be used. This can also be set to -1 which turns on mixed decay permanently also in the rising part of the microstep wave. This can be used to fix microstep errors.	02048 or -1 $\left[\frac{16MHz}{65536} \cdot 2^{PD} \frac{\mu steps}{sec}\right]$
204	freewheeling	Time after which the power to the motor will be cut when its velocity has reached zero.	065535 0 = never [msec]
205	stall detection threshold	Stall detection threshold. Set it to 0 for no stall detection or to a value between 1 (low threshold) and 7 (high threshold). The motor will be stopped if the load value exceeds the stall detection threshold. Switch off mixed decay to get usable results.	07
206	actual load value	Readout of the actual load value used for stall detection.	07
208	driver error flags	TMC236 error flags.	
211	fullstep threshold	When exceeding this speed the driver will switch to real full step mode. To disable this feature set this parameter to zero or to a value greater than 2047. Setting a full step threshold allows higher motor torque of the motor at higher velocity. When experimenting with this in a given application, try to reduce the motor current in order to be able to reach a higher motor velocity!	02048 $\left[\frac{16MHz}{65536} \cdot 2^{PD} \frac{\mu steps}{sec}\right]$
214	power down delay	Standstill period before the current is changed down to standby current. The standard value is 200 (value equates 2000msec).	1 65535 [10msec]

* Unit of acceleration: $\frac{16MHz^2}{536870912 \cdot 2^{puls} divisor + ramp_divisor} \frac{\text{microsteps}}{\text{sec}^2}$

Example:

Get the actual position of motor *Mnemonic:* GAP 1, 0

Binary:

Byte Index	0	1	2	3	4	5	6	7	8
Function	Target-	Instruction	Туре	Motor/	Operand	Operand	Operand	Operand	Checksum
	address	Number		Bank	Byte3	Bytez	Byte1	Byteo	
Value (hex)	\$01	\$06	\$01	\$00	\$00	\$00	\$00	\$00	\$08

Reply:

Byte Index	0	1	2	3	4	5	6	7	8
Function	Host-	Target-	Status	Instruction	Operand	Operand	Operand	Operand	Checksum
	address	address			Byte3	Bytez	Byte1	Byteo	
Value (hex)	\$02	\$01	\$64	\$06	\$00	\$00	\$02	\$c7	\$36

⇒ status=no error, position=711

6.7.7 STAP (store axis parameter)

An axis parameter previously set with a *Set Axis Parameter command (SAP)* will be stored permanent. Most parameters are automatically restored after power up (refer to axis parameter list in chapter 7).

Internal function: An axis parameter value stored in SRAM will be transferred to EEPROM and loaded from EEPORM after next power up.

Related commands: SAP, RSAP, GAP, AAP

Mnemonic: STAP <parameter number>, <motor number>

Binary representation:

INSTRUCTION NO.	ТҮРЕ	MOT/BANK	VALUE
7	<parameter number=""></parameter>	<motor number="">*1</motor>	(don't care)* ²

*1 Motor number is always o as only one motor is involved.

*² The value operand of this function has no effect. Instead, the currently used value (e.g. selected by SAP) is saved.

Reply in direct mode:

-	STATUS	VALUE		
	100 - OK	(don't care)		

Parameter ranges:

Parameter number	Motor number	Value
s. chapter 7	0	s. chapter 7

List of parameters, which can be used for STAP:

Number	Axis Parameter	Description
4	maximum positioning speed	Should not exceed the physically highest possible value. Adjust the pulse divisor (no. 154), if the speed value is very low (<50) or above the upper limit. See TMC 428 datasheet for calculation of physical units.
5	maximum acceleration	The limit for acceleration (and deceleration). Changing this parameter requires re- calculation of the acceleration factor (no. 146) and the acceleration divisor (no. 137), which is done automatically. See TMC 428 datasheet for calculation of physical units.
6	absolute max. current	The most important motor setting, since too high values might cause motor damage! The maximum value is 255 (which mean 100% of the maximum current of the module).
7	standby current	The current limit two seconds after the motor has stopped.
12	right limit switch disable	If set, deactivates the stop function of the right switch
13	left limit switch disable	Deactivates the stop function of the left switch resp. reference switch if set.
130	minimum speed	Should always be set 1 to ensure exact reaching of the target position. Normally no need to change!
Number	Axis Parameter	Description
--------	--------------------------------------	---
138	ramp mode microstep resolution	Automatically set when using ROR, ROL, MST and MVP. o: position mode. Steps are generated, when the parameters actual position and target position differ. Trapezoidal speed ramps are provided. 2: velocity mode. The motor will run continuously and the speed will be changed with constant (maximum) acceleration, if the parameter <i>target speed</i> is changed. For special purposes, the soft mode (value 1) with exponential decrease of speed can be selected. 0 - full step*) 1 - half step*)
		 2 - 4 microsteps 3 - 8 microsteps 4 - 16 microsteps 5 - 32 microsteps**) 6 - 64 microsteps**) Note that modifying this parameter will affect the rotation speed in the same relation: *) The full-step setting and the half-step setting are not optimized for use without an adapted microstepping table. These settings just step through the microstep table in steps of 64 respectively 32. To get real full stepping use axis parameter 211 or load an adapted microstepping table. **) If the module is specified for 16 microsteps only, switching to 32 or 64 microsteps brings an enhancement in resolution and smoothness. The position counter will use the full resolution, but, however, the motor will resolve a maximum of 24 different microsteps only for the 32 or 64 microstep units.
149	soft stop flag	If cleared, the motor will stop immediately (disregarding motor limits), when the reference or limit switch is hit.
153	ramp divisor	The exponent of the scaling factor for the ramp generator- should be de/incremented carefully (in steps of one).
154	pulse divisor	The exponent of the scaling factor for the pulse (step) generator – should be de/incremented carefully (in steps of one).
193	referencing mode	 Only the left reference switch is searched. The right switch is searched and afterwards the left switch is searched. Three-switch-mode: the right switch is searched first and afterwards the reference switch will be searched. Please see chapter 6.7.13 for details on reference search.

Number	Axis Parameter	Description
194	referencing search speed	For the reference search this value specifies the search speed as a fraction of the maximum velocity: o – full speed 1 – half of the maximum speed 2 – a quarter of the maximum speed 3 – 1/8 of the maximum speed (etc.)
195	referencing switch speed	Similar to parameter no. 194, the speed for the switching point calibration can be selected.
203	mixed decay threshold	If the actual velocity is above this threshold, mixed decay will be used. This can also be set to -1 which turns on mixed decay permanently also in the rising part of the microstep wave. This can be used to fix microstep errors.
204	freewheeling	Time after which the power to the motor will be cut when its velocity has reached zero.
205	stall detection threshold	Stall detection threshold. Set it to 0 for no stall detection or to a value between 1 (low threshold) and 7 (high threshold). The motor will be stopped if the load value exceeds the stall detection threshold. Switch off mixed decay to get usable results.
211	fullstep threshold	When exceeding this speed the driver will switch to real full step mode. To disable this feature set this parameter to zero or to a value greater than 2047. Setting a full step threshold allows higher motor torque of the motor at higher velocity. When experimenting with this in a given application, try to reduce the motor current in order to be able to reach a higher motor velocity!
214	power down delay	Standstill period before the current is changed down to standby current. The standard value is 200 (value equates 2000msec).

Example:

Store the maximum speed *Mnemonic:* STAP 4, o

Binary:

Byte Index	0	1	2	3	4	5	6	7	8
Function	Target-	Instruction	Туре	Motor/ Bank	Operand Bytes	Operand	Operand	Operand Byteo	Checksum
	auuress	Number		Dallk	byles	Dytez	бугет	byteo	
Value (hex)	\$01	\$07	\$04	\$00	\$00	\$00	\$00	\$00	\$oc

Note: The STAP command will not have any effect when the configuration EEPROM is locked (refer to 8.1). In direct mode, the error code 5 (configuration EEPROM locked, see also section 6.2.1) will be returned in this case.

6.7.8 RSAP (restore axis parameter)

For all configuration-related axis parameters non-volatile memory locations are provided. By default, most parameters are automatically restored after power up (refer to axis parameter list in chapter 7). A single parameter that has been changed before can be reset by this instruction also.

Internal function: The specified parameter is copied from the configuration EEPROM memory to its RAM location.

Relate commands: SAP, STAP, GAP, and AAP

Mnemonic: RSAP <parameter number>, <motor number>

Binary representation:

INSTRUCTION NO.	ТҮРЕ	MOT/BANK	VALUE	
8	<parameter number=""></parameter>	<motor number="">*</motor>	(don't care)	

* Motor number is always o as only one motor is involved.

Reply structure in direct mode:

STATUS	VALUE
100 - OK	(don't care)

List of parameters, which can be used for RSAP:

Number	Axis Parameter	Description				
4	maximum	Should not exceed the physically highest				
	positioning	possible value. Adjust the pulse divisor (no.				
	speed	154), if the speed value is very low (<50) or				
		above the upper limit. See TMC 428 datasheet				
		for calculation of physical units.				
5	maximum	The limit for acceleration (and deceleration).				
	acceleration	Changing this parameter requires re-				
		calculation of the acceleration factor (no. 146)				
		and the acceleration divisor (no. 137), which is				
		done automatically. See TMC 428 datasheet for				
		calculation of physical units.				
6	absolute max.	The most important motor setting, since too				
	current	high values might cause motor damage! The				
		maximum value is 255 (which mean 100% of				
		the maximum current of the module).				
7	standby current	The current limit two seconds after the motor				
		has stopped.				
12	right limit switch	If set, deactivates the stop function of the				
	disable	right switch				
13	left limit switch	Deactivates the stop function of the left				
	disable	switch resp. reference switch if set.				
130	minimum speed	Should always be set 1 to ensure exact				
		reaching of the target position. Normally no				
		need to change!				

Number	Axis Parameter	Description
138	microstep resolution	Automatically set when using ROR, ROL, MST and MVP. o: position mode. Steps are generated, when the parameters actual position and target position differ. Trapezoidal speed ramps are provided. 2: velocity mode. The motor will run continuously and the speed will be changed with constant (maximum) acceleration, if the parameter <i>target speed</i> is changed. For special purposes, the soft mode (value 1) with exponential decrease of speed can be selected. 0 - full step*) 1 - half step*) 2 - 4 microsteps 3 - 8 microsteps 4 - 16 microsteps 5 - 32 microsteps**) 6 - 64 microsteps**) Note that modifying this parameter will affect
		the rotation speed in the same relation: *) The full-step setting and the half-step setting are not optimized for use without an adapted microstepping table. These settings just step through the microstep table in steps of 64 respectively 32. To get real full stepping use axis parameter 211 or load an adapted microstepping table. **) If the module is specified for 16 microsteps only, switching to 32 or 64 microsteps brings an enhancement in resolution and smoothness. The position counter will use the full resolution, but, however, the motor will resolve a maximum of 24 different microsteps only for the 32 or 64 microstep units.
149	soft stop flag	If cleared, the motor will stop immediately (disregarding motor limits), when the reference or limit switch is hit.
153	ramp divisor	The exponent of the scaling factor for the ramp generator- should be de/incremented carefully (in steps of one).
154	pulse divisor	The exponent of the scaling factor for the pulse (step) generator – should be de/incremented carefully (in steps of one).
193	referencing mode	 Only the left reference switch is searched. The right switch is searched and afterwards the left switch is searched. Three-switch-mode: the right switch is searched first and afterwards the reference switch will be searched. Please see chapter 6.7.13 for details on reference search.

Number	Axis Parameter	Description
194	referencing search speed	For the reference search this value specifies the search speed as a fraction of the maximum velocity: o – full speed 1 – half of the maximum speed 2 – a quarter of the maximum speed 3 – 1/8 of the maximum speed (etc.)
195	referencing switch speed	Similar to parameter no. 194, the speed for the switching point calibration can be selected.
203	mixed decay threshold	If the actual velocity is above this threshold, mixed decay will be used. This can also be set to -1 which turns on mixed decay permanently also in the rising part of the microstep wave. This can be used to fix microstep errors.
204	freewheeling	Time after which the power to the motor will be cut when its velocity has reached zero.
205	stall detection threshold	Stall detection threshold. Set it to 0 for no stall detection or to a value between 1 (low threshold) and 7 (high threshold). The motor will be stopped if the load value exceeds the stall detection threshold. Switch off mixed decay to get usable results.
211	fullstep threshold	When exceeding this speed the driver will switch to real full step mode. To disable this feature set this parameter to zero or to a value greater than 2047. Setting a full step threshold allows higher motor torque of the motor at higher velocity. When experimenting with this in a given application, try to reduce the motor current in order to be able to reach a higher motor velocity!
214	power down delay	Standstill period before the current is changed down to standby current. The standard value is 200 (value equates 2000msec).

Example:

Restore the maximum current *Mnemonic:* RSAP 6, 0

Byte Index	0	1	2	3	4	5	6	7	8
Function	Target-	Instruction	Туре	Motor/	Operand	Operand	Operand	Operand	Checksum
	address	Number		Bank	Byte3	Byte2	Byte1	Byteo	
Value (hex)	\$01	\$08	\$06	\$00	\$00	\$00	\$00	\$00	\$of

6.7.9 SGP (set global parameter)

With this command most of the module specific parameters not directly related to motion control can be specified and the TMCLTM user variables can be changed. Global parameters are related to the host interface, peripherals or application specific variables. The different groups of these parameters are organized in *banks* to allow a larger total number for future products. Currently, bank o and 1 are used for global parameters, and bank z is used for user variables.

All module settings will automatically be stored non-volatile (internal EEPROM of the processor). The TMCL™ user variables will not be stored in the EEPROM automatically, but this can be done by using STGP commands.

Internal function: the parameter format is converted ignoring leading zeros (or ones for negative values). The parameter is transferred to the correct position in the appropriate (on board) device.

Related commands: GGP, STGP, RSGP, AGP

Mnemonic: SGP <parameter number>, <bank number>, <value>

Binary representation:

INSTRUCTION NO.	ТҮРЕ	MOT/BANK	VALUE
9	<parameter number></parameter 	<bank number=""></bank>	<value></value>

Reply in direct mode:

STATUS	VALUE
100 – OK	(don't care)

Global parameters of bank o, which can be used for SGP:

Number	Global parameter	Descr	iption		Range		
64	EEPROM magic	Settin	g this parameter to a	different value as \$E4 will	0255		
		cause	ause re-initialization of the axis and global parameters				
		(to fa	o factory defaults) after the next power up. This is				
		usefu	seful in case of miss-configuration.09600 baudDefault				
65	RS232 baud rate	0	9600 baud	Default	07		
		1	14400 baud				
		2	19200 baud				
		3	28800 baud				
		4	38400 baud				
		5	57600 baud				
		6	76800 baud	Not supported by Windows!			
		7	(115200 baud)	3.68% Error (111111 Bits/s)			
66	serial address	The m	he module (target) address for RS-232.				
67	ASCII mode	Config	jure the TMCL [™] ASCII i	interface:			
		Bit o:	o – start up in binary (normal) mode			
			1 – start up in ASCII mode				
		Bits 4 and 5:					
		00 – E	oo – Echo back each character				
		01 - E	cho back complete cor	nmand			
		10 - [Oo not send echo, only	send command reply			

Number	Global parameter	Description					
69	CAN bit rate	1 10kBit/s	17				
		2 20kBit/s					
		3 50kBit/s					
		4 100kBit/s					
		5 125kBit/s					
		6 250kBit/s Default					
		7 500kBit/s					
		8 1000kBit/s					
70	CAN reply ID	The CAN ID for replies from the board (default: 2)	07ff				
71	CAN ID	The module (target) address for CAN (default: 1)	07ff				
73	configuration EEPROM	Write: 1234 to lock the EEPROM, 4321 to unlock it.	0/1				
	lock flag	Read: 1=EEPROM locked, o=EEPROM unlocked.					
75	telegram pause time	Pause time before the reply via RS232 is sent. For RS23	2 0255				
		set to 0.					
		For CAN interface this parameter has no effect!					
76	serial host address	Host address used in the reply telegrams sent back via c					
		RS232.					
77	auto start mode	o: Do not start TMCL [™] application after power up					
		(default).					
		1: Start IMCL [™] application automatically after power up.					
80	shutdown pin	Select the functionality of the SHUIDOWN pin	02				
	functionality	o – no function					
		1 – high active					
0		2 – IOW active					
81	IMCL ^{III} code protection	Protect a IMCL ^{III} program against disassembling o	or 0,1,2,3				
		overwriting.					
		0 - no protection					
		1 - protection against disassembling					
		2 - protection against disassembling and overwriting					
		If you switch off the protection against					
		disassembling the program will be erased first					
		Changing this value from 1 or 2 to 0 or 2 the TMCI ^{TM}					
		program will be wined off					
83	CAN secondary address	Second CAN ID for the module. Switched off when set t	o 07ff				
		zero.					
132	tick timer	A 32 bit counter that gets incremented by one ever	v				
		millisecond. It can also be reset to any start value					

Global parameters of bank 1, which can be used for SGP:

The global parameter bank 1 is normally not available. It may be used for customer specific extensions of the firmware. Together with user definable commands (see section 7.3) these variables form the interface between extensions of the firmware (written in C) and TMCL^{TM} applications.

Global parameters of bank 2, which can be used for SGP:

Bank 2 contains general purpose 32 bit variables for the use in TMCL[™] applications. They are located in RAM and can be stored to EEPROM. After booting, their values are automatically restored to the RAM.

Number	Global parameter	Description	Range
0	general purpose variable #0	for use in TMCL™ applications	-2 ³¹ +2 ³¹
1	general purpose variable #1	for use in TMCL™ applications	-2 ³¹ +2 ³¹
2	general purpose variable #2	for use in TMCL™ applications	-2 ³¹ +2 ³¹
3	general purpose variable #3	for use in TMCL™ applications	-2 ³¹ +2 ³¹
4	general purpose variable #4	for use in TMCL™ applications	-2 ³¹ +2 ³¹
5	general purpose variable #5	for use in TMCL™ applications	-2 ³¹ +2 ³¹
6	general purpose variable #6	for use in TMCL™ applications	-2 ³¹ +2 ³¹
7	general purpose variable #7	for use in TMCL™ applications	-2 ³¹ +2 ³¹
8	general purpose variable #8	for use in TMCL™ applications	-2 ³¹ +2 ³¹
9	general purpose variable #9	for use in TMCL™ applications	-2 ³¹ +2 ³¹
10	general purpose variable #10	for use in TMCL™ applications	-2 ³¹ +2 ³¹
11	general purpose variable #11	for use in TMCL™ applications	-2 ³¹ +2 ³¹
12	general purpose variable #12	for use in TMCL™ applications	-2 ³¹ +2 ³¹
13	general purpose variable #13	for use in TMCL™ applications	-2 ³¹ +2 ³¹
14	general purpose variable #14	for use in TMCL™ applications	-2 ³¹ +2 ³¹
15	general purpose variable #15	for use in TMCL™ applications	-2 ³¹ +2 ³¹
16	general purpose variable #16	for use in TMCL™ applications	-2 ³¹ +2 ³¹
17	general purpose variable #17	for use in TMCL™ applications	-2 ³¹ +2 ³¹
18	general purpose variable #18	for use in TMCL™ applications	-2 ³¹ +2 ³¹
19	general purpose variable #19	for use in TMCL™ applications	-2 ³¹ +2 ³¹
2055	general purpose variables	for use in TMCL™ applications	-2 ³¹ +2 ³¹
	#20#55		

Example:

Set the serial address of the target device to 3 Mnemonic: SGP 66, 0, 3

Binary:

Byte Index	0	1	2	3	4	5	6	7	8
Function	Target-	Instruction	Туре	Motor/	Operand	Operand	Operand	Operand	Checksum
	address	Number		Bank	Byte3	Bytez	Byte1	Byteo	
Value (hex)	\$01	\$09	\$42	\$00	\$00	\$00	\$00	\$o3	\$4f

Please refer to chapter 8 for more information about bank 0 to 2.

6.7.10 GGP (get global parameter)

All global parameters can be read with this function. Global parameters are related to the host interface, peripherals or application specific variables. The different groups of these parameters are organized in *banks* to allow a larger total number for future products. Currently, bank o and 1 are used for global parameters, and bank 2 is used for user variables.

Internal function: The parameter is read out of the correct position in the appropriate device. The parameter format is converted adding leading zeros (or ones for negative values).

Related commands: SGP, STGP, RSGP, AGP

Mnemonic: GGP <parameter number>, <bank number>

Binary representation:

INSTRUCTION NO.	ТҮРЕ	MOT/BANK	VALUE
10	<parameter number=""></parameter>	<bank number=""></bank>	(don't care)

Reply in direct mode:

STATUS	VALUE		
100 - OK	(don't care)		

Global parameters of bank o, which can be used for GGP:

Number	Global parameter	Description						
64	EEPROM magic	Settin	g this parameter to a	different value as \$E4 will	0255			
		cause	re-initialization of the	axis and global parameters				
		(to fa	(to factory defaults) after the next power up. This is					
		useful	in case of miss-config	uration.				
65	RS232 baud rate	0	9600 baud	Default	07			
		1	14400 baud					
		2	19200 baud					
		3	28800 baud					
		4	38400 baud					
		5	57600 baud					
		6	76800 baud	Not supported by Windows!				
		7	(115200 baud)	3.68% Error (111111 Bits/s)				
66	serial address	The m	The module (target) address for RS-232/RS-485.					
67	ASCII mode	Config	Configure the TMCL [™] ASCII interface:					
		Bit o:	o – start up in binary (normal) mode				
			1 – start up in ASCII r	node				
		Bits 4	and 5:					
		00 – E	oo – Echo back each character					
		01 - E	cho back complete cor	nmand				
		10 - C	o not send echo, only	send command reply				
69	CAN bit rate	1	10kBit/s		17			
		2	20kBit/s					
		3	50kBit/s					
		4	100kBit/s					
		5	125kBit/s					
		6	250kBit/s	Default				
		_7	500kBit/s					
		8	1000kBit/s					
70	CAN reply ID	The C	AN ID for replies from	the board (default: 2)	07ff			
71	CAN ID	The m	The module (target) address for CAN (default: 1) 0					

Number	Global parameter	Description	Range		
73	configuration EEPROM lock flag	Write: 1234 to lock the EEPROM, 4321 to unlock it. Read: 1=EEPROM locked, o=EEPROM unlocked.	0/1		
75	telegram pause time	Pause time before the reply via RS232 is sent. For RS232	0255		
		set to o. For CAN interface this parameter has no effect!			
76	serial host address	Host address used in the reply telegrams sent back via RS232.	0255		
77	auto start mode	o: Do not start TMCL [™] application after power up (default). 1: Start TMCL [™] application automatically after power up.	0/1		
80	shutdown pin functionality	Select the functionality of the SHUTDOWN pin o – no function 1 – high active 2 – low active	02		
81	TMCL [™] code protection	Protect a TMCL [™] program against disassembling or overwriting. 0 - no protection 1 - protection against disassembling 2 - protection against overwriting 3 - protection against disassembling and overwriting If you switch off the protection against disassembling, the program will be erased first! Changing this value from 1 or 3 to 0 or 2, the TMCL[™]			
83	CAN secondary address	Second CAN ID for the module. Switched off when set to zero.	07ff		
128	TMCL [™] application status	0 -stop 1 - run 2 - step 3 - reset			
129	download mode	0 – normal mode 1 – download mode			
130	TMCL [™] program counter	The index of the currently executed TMCL [™] instruction.			
132	tick timer	A 32 bit counter that gets incremented by one every millisecond. It can also be reset to any start value.			
133	random number	Choose a random number. <i>Read only!</i> 0214			

Global parameters of bank 1, which can be used for GGP:

The global parameter bank 1 is normally not available. It may be used for customer specific extensions of the firmware. Together with user definable commands (see section 7.3) these variables form the interface between extensions of the firmware (written in C) and TMCL^{TM} applications.

Global parameters of bank 2, which can be used for GGP:

Bank 2 contains general purpose 32 bit variables for the use in TMCL[™] applications. They are located in RAM and can be stored to EEPROM. After booting, their values are automatically restored to the RAM.

Number	Global parameter	Description	Range
0	general purpose variable #o	for use in TMCL™ applications	-2 ³¹ +2 ³¹
1	general purpose variable #1	for use in TMCL™ applications	-2 ³¹ +2 ³¹
2	general purpose variable #2	for use in TMCL™ applications	-2 ³¹ +2 ³¹
3	general purpose variable #3	for use in TMCL™ applications	-2 ³¹ +2 ³¹
4	general purpose variable #4	for use in TMCL™ applications	-2 ³¹ +2 ³¹
5	general purpose variable #5	for use in TMCL™ applications	-2 ³¹ +2 ³¹
6	general purpose variable #6	for use in TMCL™ applications	-2 ³¹ +2 ³¹
7	general purpose variable #7	for use in TMCL™ applications	-2 ³¹ +2 ³¹
8	general purpose variable #8	for use in TMCL™ applications	-2 ³¹ +2 ³¹
9	general purpose variable #9	for use in TMCL™ applications	-2 ³¹ +2 ³¹
10	general purpose variable #10	for use in TMCL™ applications	-2 ³¹ +2 ³¹
11	general purpose variable #11	for use in TMCL™ applications	-2 ³¹ +2 ³¹
12	general purpose variable #12	for use in TMCL™ applications	-2 ³¹ +2 ³¹
13	general purpose variable #13	for use in TMCL™ applications	-2 ³¹ +2 ³¹
14	general purpose variable #14	for use in TMCL™ applications	-2 ³¹ +2 ³¹
15	general purpose variable #15	for use in TMCL™ applications	-2 ³¹ +2 ³¹
16	general purpose variable #16	for use in TMCL™ applications	-2 ³¹ +2 ³¹
17	general purpose variable #17	for use in TMCL™ applications	-2 ³¹ +2 ³¹
18	general purpose variable #18	for use in TMCL™ applications	-2 ³¹ +2 ³¹
19	general purpose variable #19	for use in TMCL™ applications	-2 ³¹ +2 ³¹
2055	general purpose variables	for use in TMCL™ applications	-2 ³¹ +2 ³¹
	#20#55		

Example:

Get the serial address of the target device *Mnemonic:* GGP 66, o

Binary:

Byte Index	0	1	2	3	4	5	6	7	8
Function	Target-	Instruction	Туре	Motor/	Operand	Operand	Operand	Operand	Checksum
	address	Number		Bank	Byte3	Bytez	Byte1	Byteo	
Value (hex)	\$01	\$oa	\$42	\$00	\$00	\$00	\$00	\$00	\$4d

Reply:

Byte Index	0	1	2	3	4	5	6	7	8
Function	Host-	Target-	Status	Instruction	Operand	Operand	Operand	Operand	Checksum
	address	address			Byte3	Bytez	Byte1	Byteo	
Value (hex)	\$oz	\$01	\$64	\$oa	\$oo	\$oo	\$oo	\$01	\$72

⇒ Status=no error, Value=1

Please refer to chapter 8 for more information about bank 0 to 2.

6.7.11 STGP (store global parameter)

This command is used to store TMCL[™] user variables permanently in the EEPROM of the module. Some global parameters are located in RAM memory, so without storing modifications are lost at power down. This instruction enables enduring storing. Most parameters are automatically restored after power up.

Internal function: The specified parameter is copied from its RAM location to the configuration EEPROM.

Related commands: SGP, GGP, RSGP, AGP

Mnemonic: STGP <parameter number>, <bank number>

Binary representation:

INSTRUCTION NO.	ТҮРЕ	MOT/BANK	VALUE
11	<parameter number=""></parameter>	<bank number=""></bank>	(don't care)

Reply in direct mode:

STATUS	VALUE		
100 - OK	(don't care)		

Global parameters of bank o, which can be used for STGP:

The global parameter bank o is not required for the STGP command, because these parameters are automatically stored with the SGP command in EEPROM.

Global parameters of bank 1, which can be used for STGP:

The global parameter bank 1 is normally not available, but can be used in customer specific extensions of the firmware.

Global parameters of bank 2, which can be used for STGP:

Bank 2 contains general purpose 32 bit variables for the use in TMCL[™] applications. They are located in RAM and can be stored to EEPROM. After booting, their values are automatically restored to the RAM.

Number	Global parameter	Description
0	general purpose variable #o	for use in TMCL™ applications
1	general purpose variable #1	for use in TMCL™ applications
2	general purpose variable #2	for use in TMCL™ applications
3	general purpose variable #3	for use in TMCL™ applications
4	general purpose variable #4	for use in TMCL™ applications
5	general purpose variable #5	for use in TMCL™ applications
6	general purpose variable #6	for use in TMCL™ applications
7	general purpose variable #7	for use in TMCL™ applications
8	general purpose variable #8	for use in TMCL™ applications
9	general purpose variable #9	for use in TMCL™ applications
10	general purpose variable #10	for use in TMCL™ applications
11	general purpose variable #11	for use in TMCL™ applications
12	general purpose variable #12	for use in TMCL™ applications
13	general purpose variable #13	for use in TMCL™ applications
14	general purpose variable #14	for use in TMCL™ applications
15	general purpose variable #15	for use in TMCL™ applications
16	general purpose variable #16	for use in TMCL™ applications
17	general purpose variable #17	for use in TMCL™ applications
18	general purpose variable #18	for use in TMCL™ applications
19	general purpose variable #19	for use in TMCL™ applications

Number	Global parameter			Description
2055	general	purpose	variables	for use in TMCL™ applications
	#20#55			

Example:

Store the user variable 5 in EEPROM. STGP 5, 2

Binary:

Byte Index	0	1	2	3	4	5	6	7	8
Function	Target-	Instruction	Type	Motor/	Operand	Operand	Operand	Operand	Checksum
	address	Number		Bank	Byte3	Bytez	Byte1	Byteo	
Value (hex)	\$01	\$ob	\$o5	\$o2	\$oo	\$oo	\$oo	\$oo	\$13

Note: The STAP command will not have any effect when the configuration EEPROM is locked (refer to 8.1). In direct mode, the error code 5 (configuration EEPROM locked, see also section 6.2.1) will be returned in this case.

Please refer to chapter 8 for more information about bank 0 to 2.

6.7.12 RSGP (restore global parameter)

With this command the contents of a TMCLTM user variable can be restored from the EEPROM. For all configuration-related axis parameters, non-volatile memory locations are provided. By default, most parameters are automatically restored after power up (see global parameter list in chapter 8). A single parameter that has been changed before can be reset by this instruction.

Internal function: The specified parameter is copied from the configuration EEPROM memory to its RAM location.

Relate commands: SAP, STAP, GAP, and AAP

Mnemonic: RSAP <parameter number>, <bank number>

Binary representation:

INSTRUCTION NO.	ТҮРЕ	MOT/BANK	VALUE
8	<parameter number=""></parameter>	<bank number=""></bank>	(don't care)

Reply structure in direct mode:

STATUS	VALUE
100 - OK	(don't care)

Global parameters of bank o, which can be used for STGP:

The global parameter bank o is not required for the STGP command, because these parameters are automatically stored with the SGP command in EEPROM.

Global parameters of bank 1, which can be used for STGP:

The global parameter bank 1 is normally not available, but can be used in customer specific extensions of the firmware.

Global parameters of bank 2, which can be used for RSGP:

Bank 2 contains general purpose 32 bit variables for the use in TMCL[™] applications. They are located in RAM and can be stored to EEPROM. After booting, their values are automatically restored to the RAM.

Number	Global parameter	Description
0	general purpose variable #o	for use in TMCL™ applications
1	general purpose variable #1	for use in TMCL™ applications
2	general purpose variable #2	for use in TMCL™ applications
3	general purpose variable #3	for use in TMCL™ applications
4	general purpose variable #4	for use in TMCL™ applications
5	general purpose variable #5	for use in TMCL™ applications
6	general purpose variable #6	for use in TMCL™ applications
7	general purpose variable #7	for use in TMCL™ applications
8	general purpose variable #8	for use in TMCL™ applications
9	general purpose variable #9	for use in TMCL™ applications
10	general purpose variable #10	for use in TMCL™ applications
11	general purpose variable #11	for use in TMCL™ applications
12	general purpose variable #12	for use in TMCL™ applications
13	general purpose variable #13	for use in TMCL™ applications
14	general purpose variable #14	for use in TMCL™ applications
15	general purpose variable #15	for use in TMCL™ applications
16	general purpose variable #16	for use in TMCL™ applications
17	general purpose variable #17	for use in TMCL [™] applications

Number	Global parameter	Description				
18	general purpose variable #18	for use in TMCL™ applications				
19	general purpose variable #19	for use in TMCL™ applications				
2055	general purpose variables	for use in TMCL™ applications				
	#20#55					

Example:

Restore the serial address of the device *Mnemonic:* RSGP 66, o

Binary:

Byte Index	0	1	2	3	4	5	6	7	8
Function	Target-	Instruction	Туре	Motor/	Operand	Operand	Operand	Operand	Checksum
	address	Number		Bank	Byte3	Bytez	Byteı	Byteo	
Value (hex)	\$01	\$oc	\$42	\$00	\$00	\$00	\$00	\$00	\$4f

Please refer to chapter 8 for more information about bank 0 to 2.

6.7.13 RFS (reference search)

The TMCM-110 module has a built-in reference search algorithm which can be used. The reference search algorithm provides switching point calibration and three switch modes. The status of the reference search can also be queried to see if it has already finished. (In a TMCL[™] program it is better to use the WAIT command to wait for the end of a reference search.) Please see the appropriate parameters in the axis parameter table to configure the reference search algorithm to meet your needs. The reference search can be started, stopped, and the actual status of the reference search can be checked.

Internal function: The reference search is implemented as a state machine, so interaction is possible during execution.

Related commands: WAIT

Mnemonic: RFS <START|STOP|STATUS>, <motor number>

Binary representation:

INSTRUCTION NO.	ТҮРЕ	MOT/BANK	VALUE
13	o START – start ref. search	0*	(don't care)
	2 STATUS – get status		

* Motor number is always o as only one motor is involved.

Reply in direct mode:

When using type o (START) or 1 (STOP):

STATUS	VALUE
100 - OK	(don't care)

When using type 2 (STATUS):

STATUS	VALUE
100 - OK	0 – no ref. search active other values – ref.
	search is active

Example:

Start reference search Mnemonic: RFS START, o

Binary:

Byte Index	0	1	2	3	4	5	6	7	8
Function	Target-	Instruction	Туре	Motor/	Operand	Operand	Operand	Operand	Checksum
	address	Number		Bank	Byte3	Bytez	Byte1	Byteo	
Value (hex)	\$01	\$od	\$00	\$00	\$00	\$00	\$00	\$00	\$oe

It is possible to use stall detection instead of a reference search. Please see section 9 for details.

6.7.14 SIO (set output)

This command sets the status of the general digital output either to low (o) or to high (1).

Internal function: The passed value is transferred to the specified output line.

Related commands: GIO, WAIT

Mnemonic: SIO <port number>, <bank number>, <value>

Binary representation:

INSTRUCTION NO.	ТҮРЕ	MOT/BANK	VALUE
14	<port number=""></port>	<bank number=""></bank>	<value></value>

Reply structure:

STATUS	VALUE		
100 - OK	(don't care)		

Example:

Set OUT_1 to high (bank 2, output 1; general purpose output) *Mnemonic:* SIO 0, 2, 1

Binary:

Byte Index	0	1	2	3	4	5	6	7	8
Function	Target-	Instruction	Type	Motor/	Operand	Operand	Operand	Operand	Checksum
	address	Number		Bank	Byte3	Byte2	Byte1	Byteo	
Value (hex)	\$01	\$oe	\$00	\$o2	\$00	\$00	\$00	\$01	\$12

Available I/O ports (connector 3):

Pin	I/O port	Command	Range
4	OUT_o	SIO 0, <bank number="">, 1/0</bank>	1/0

6.7.15 GIO (get input/output)

With this command the status of the two available general purpose inputs of the module can be read out. The function reads a digital or analogue input port. Digital lines will read o and 1, while the ADC channels deliver their 10 bit result in the range of 0... 1023. In stand-alone mode the requested value is copied to the *accumulator* (accu) for further processing purposes such as conditioned jumps. In direct mode the value is only output in the *value* field of the reply, without affecting the accumulator. The actual status of a digital output line can also be read.

Internal function: The specified line is read.

Related commands: SIO, WAIT

Mnemonic: GIO <port number>, <bank number>

Binary representation:

INSTRUCTION NO.	ТҮРЕ	MOT/BANK	VALUE
15	<port number=""></port>	<bank number=""></bank>	(don't care)

Reply in direct mode:

STATUS	VALUE
100 - OK	<status of="" th="" the<=""></status>
	port>

Example:

Get the analogue value of ADC channel o *Mnemonic:* GIO 0, 1

Binary:

Byte Index	ο	1	2	3	4	5	6	7	8
Function	Target-	Instruction	Туре	Motor/	Operand	Operand	Operand	Operand	Checksum
	address	Number		Bank	Byte3	Bytez	Byte1	Byteo	
Value (hex)	\$01	\$of	\$00	\$01	\$00	\$00	\$oo	\$oo	\$11

Reply:

Byte Index	0	1	2	3	4	5	6	7	8
Function	Host-	Target-	Status	Instruction	Operand	Operand	Operand	Operand	Checksum
	address	address			Byte3	Bytez	Byteı	Byteo	
Value (hex)	\$oz	\$01	\$64	\$of	\$oo	\$oo	\$01	\$fa	\$72

⇒ value: 506

6.7.15.1 I/O bank o - digital inputs (connector 3):

The ADIN lines can be read as digital or analogue inputs at the same time. The analogue values can be accessed in bank 1.

Pin	I/O port	Command	Range
7	IN_o	GIO o, o	1/0

6.7.15.2 I/O bank 1 - analogue inputs:

The ADIN lines can be read back as digital or analogue inputs at the same time. The digital states can be accessed in bank o.

Pin	I/O port	Command	Range
7	IN_o	GIO 0, 1	01023

6.7.15.3 I/O bank 2 - the states of digital outputs

The states of the OUT lines (that have been set by SIO commands) can be read back using bank 2.

Pin	I/O port	Command	Range
4	OUT_o	GIO o, 2, <n></n>	1/0

6.7.16 CALC (calculate)

A value in the accumulator variable, previously read by a function such as GAP (get axis parameter), can be modified with this instruction. Nine different arithmetic functions can be chosen and one constant operand value must be specified. The result is written back to the accumulator, for further processing like comparisons or data transfer.

Related commands: CALCX, COMP, JC, AAP, AGP, GAP, GGP, GIO

Mnemonic: CALC <op>, <value>

where <op> is ADD, SUB, MUL, DIV, MOD, AND, OR, XOR, NOT or LOAD

Binary representation:

INSTRUCTION NO.	ТҮРЕ	MOT/BANK	VALUE
19	o ADD – add to accu	(don't care)	<operand></operand>
	1 SUB – subtract from accu		
	2 MUL – multiply accu by		
	з DIV – divide accu by		
	4 MOD – modulo divide by		
	5 AND – logical and accu with		
	6 OR – logical or accu with		
	7 XOR – logical exor accu with		
	8 NOT – logical invert accu		
	9 LOAD – load operand to accu		

Example:

Multiply accu by -5000 *Mnemonic:* CALC MUL, -5000

Byte Index	0	1	2	3	4	5	6	7	8
Function	Target-	Instruction	Туре	Motor/	Operand	Operand	Operand	Operand	Checksum
	address	Number		Bank	Byte3	Bytez	Byte1	Byteo	
Value (hex)	\$01	\$13	\$oz	\$00	\$FF	\$FF	\$EC	\$78	\$78

6.7.17 COMP (compare)

The specified number is compared to the value in the accumulator register. The result of the comparison can for example be used by the conditional jump (JC) instruction. This command is intended for use in standalone operation only.

The host address and the reply are only used to take the instruction to the TMCL[™] program memory while the TMCL[™] program loads down. It does not make sense to use this command in direct mode.

Internal function: The specified value is compared to the internal *accumulator*, which holds the value of a preceding *get* or calculate instruction (see GAP/GGP/GIO/CALC/CALCX). The internal arithmetic status flags are set according to the comparison result.

Related commands: JC (jump conditional), GAP, GGP, GIO, CALC, CALCX

Mnemonic: COMP <value>

Binary representation:

INSTRUCTION NO.	INSTRUCTION NO. TYPE		VALUE		
20	(don't care)	(don't care)	<comparison value=""></comparison>		

Example:

Jump to the address given by the label when the position of motor #2 is greater than or equal to 1000.

GAP 1, 2, 0 //get axis parameter, type: no. 1 (actual position), motor: 2, value: 0 (don't care)
COMP 1000 //compare actual value to 1000
JC GE, Label //jump, type: 5 greater/equal, the label must be defined somewhere else in the program

Binary format of the COMP 1000 command:

Byte Index	0	1	2	3	4	5	6	7	8
Function	Target-	Instruction	Туре	Motor/	Operand	Operand	Operand	Operand	Checksum
	address	Number		Bank	Byte3	Bytez	Byte1	Byteo	
Value (hex)	\$01	\$14	\$00	\$00	\$oo	\$oo	\$o3	\$e8	\$00

6.7.18 JC (jump conditional)

The JC instruction enables a conditional jump to a fixed address in the TMCL[™] program memory, if the specified condition is met. The conditions refer to the result of a preceding comparison. This function is for stand-alone operation only.

The host address and the reply are only used to take the instruction to the TMCL^M program memory while the TMCL^M program loads down. See the host-only control functions for details. It is not possible to use this command in direct mode.

Internal function: The TMCL[™] program counter is set to the passed value if the arithmetic status flags are in the appropriate state(s).

Related commands: JA, COMP, WAIT, CLE

Mnemonic: JC <condition>, <label> where <condition>=ZE|NZ|EQ|NE|GT|GE|LT|LE|ETO|EAL|EDV|EPO

Binary representation:

INSTRUCTION NO.	ТҮРЕ	MOT/BANK	VALUE
21	o ZE - zero	(don't care)	<jump address=""></jump>
	1 NZ - not zero		
	z EQ - equal		
	3 NE - not equal		
	4 GT - greater		
	5 GE - greater/equal		
	6 LT - lower		
	7 LE - lower/equal		
	8 ETO - time out error		
	9 EAL – external alarm		
	12 ESD – shutdown error		

Example:

Jump to address given by the label when the position of motor is greater than or equal to 1000.

GAP 1, 0, 0//get axis parameter, type: no. 1 (actual position), motor: 0, value: 0 (don't care)COMP 1000//compare actual value to 1000JC GE, Label//jump, type: 5 greater/equal...

...

Label: ROL 0, 1000

Binary format of "JC GE, Label" when Label is at address 10:

Byte Index	0	1	2	3	4	5	6	7	8
Function	Target-	Instruction	Туре	Motor/	Operand	Operand	Operand	Operand	Checksum
	address	Number		Bank	Byte3	Bytez	Byte1	Byteo	
Value (hex)	\$01	\$15	\$05	\$00	\$00	\$00	\$00	\$oa	\$25

6.7.19 JA (jump always)

Jump to a fixed address in the TMCL[™] program memory. This command is intended for stand-alone operation only.

The host address and the reply are only used to take the instruction to the TMCL^m program memory while the TMCL^m program loads down. This command cannot be used in direct mode.

Internal function: The TMCL[™] program counter is set to the passed value.

Related commands: JC, WAIT, CSUB

Mnemonic: JA <Label>

Binary representation:

INSTRUCTION NO.	INSTRUCTION NO. TYPE		VALUE		
22	(don't care)	(don't care)	<jump address=""></jump>		

Example: An infinite loop in TMCL™

Loop: MVP ABS, 0, 10000 WAIT POS, 0, 0 MVP ABS, 0, 0 WAIT POS, 0, 0 JA Loop //Jump to the label "Loop"

Binary format of "JA Loop" assuming that the label "Loop" is at address 20:

Byte Index	0	1	2	3	4	5	6	7	8
Function	Target-	Instruction	Туре	Motor/	Operand	Operand	Operand	Operand	Checksum
	address	Number		Bank	Byte3	Bytez	Byte1	Byteo	
Value (hex)	\$01	\$16	\$00	\$00	\$00	\$00	\$00	\$14	\$zb

6.7.20 CSUB (call subroutine)

This function calls a subroutine in the TMCL[™] program memory. It is intended for stand-alone operation only.

The host address and the reply are only used to take the instruction to the TMCLTM program memory while the TMCLTM program loads down. This command cannot be used in direct mode.

Internal function: The actual TMCL[™] program counter value is saved to an internal stack, afterwards overwritten with the passed value. The number of entries in the internal stack is limited to 8. This also limits nesting of subroutine calls to 8. The command will be ignored if there is no more stack space left.

Related commands: RSUB, JA

Mnemonic: CSUB <Label>

Binary representation:

INSTRUCTION NO.	JCTION NO. TYPE		VALUE		
23	(don't care)	(don't care)	<subroutine address=""></subroutine>		

Example: Call a subroutine

Loop: MVP ABS, 0, 10000 CSUB SubW //Save program counter and jump to label "SubW" MVP ABS, 0, 0 JA Loop

SubW: WAIT POS, o, o

WAIT TICKS, 0, 50 RSUB //(

//Continue with the command following the CSUB command

Binary format of the "CSUB SubW" command assuming that the label "SubW" is at address 100:

Byte Index	0	1	2	3	4	5	6	7	8
Function	Target-	Instruction	Туре	Motor/	Operand	Operand	Operand	Operand	Checksum
	address	Number		Bank	Byte3	Bytez	Byte1	Byteo	
Value (hex)	\$01	\$17	\$00	\$00	\$00	\$00	\$oo	\$64	\$7c

6.7.21 RSUB (return from subroutine)

Return from a subroutine to the command after the CSUB command. This command is intended for use in stand-alone mode only.

The host address and the reply are only used to take the instruction to the TMCL[™] program memory while the TMCL[™] program loads down. This command cannot be used in direct mode.

Internal function: The TMCL[™] program counter is set to the last value of the stack. The command will be ignored if the stack is empty.

Related command: CSUB

Mnemonic: RSUB

Binary representation:

INSTRUCTION NO.	ТҮРЕ	MOT/BANK	VALUE		
24	(don't care)	(don't care)	(don't care)		

Example: Please have a look at the CSUB example below.

Binary format of RSUB:

Byte Index	0	1	2	3	4	5	6	7	8
Function	Target-	Instruction	Туре	Motor/	Operand	Operand	Operand	Operand	Checksum
	address	Number		Bank	Byte3	Bytez	Byte1	Byteo	
Value (hex)	\$01	\$18	\$00	\$00	\$oo	\$oo	\$oo	\$oo	\$19

6.7.22 WAIT (wait for an event to occur)

This instruction interrupts the execution of the TMCL[™] program until the specified condition is met. This command is intended for stand-alone operation only.

The host address and the reply are only used to take the instruction to the TMCL^m program memory while the TMCL^m program loads down. This command is not to be used in direct mode.

There are five different wait conditions that can be used:

- TICKS: Wait until the number of timer ticks specified by the <ticks> parameter has been reached.
- POS: Wait until the target position of the motor specified by the <motor> parameter has been reached. An optional timeout value (o for no timeout) must be specified by the <ticks> parameter.
- REFSW: Wait until the reference switch of the motor specified by the <motor> parameter has been triggered. An optional timeout value (o for no timeout) must be specified by the <ticks> parameter.
- LIMSW: Wait until a limit switch of the motor specified by the <motor> parameter has been triggered. An optional timeout value (o for no timeout) must be specified by the <ticks> parameter.
- RFS: Wait until the reference search of the motor specified by the <motor> field has been reached. An optional timeout value (o for no timeout) must be specified by the <ticks> parameter.

The timeout flag (ETO) will be set after a timeout limit has been reached. You can then use a JC ETO command to check for such errors or clear the error using the CLE command.

Internal function: The TMCL[™] program counter is held until the specified condition is met.

Related commands: JC, CLE

Mnemonic: WAIT <condition>, <motor number>, <ticks> where <condition> is TICKS/POS/REFSW/LIMSW/RFS

Binary representation:

INSTRUCTION NO.	ТҮРЕ	MOT/BANK	VALUE
27	o TICKS - timer ticks*1	(don't care)	<no. of="" ticks*=""></no.>
	1 POS - target position reached	0 ^{*2}	<no. for="" of="" ticks*="" timeout="">,</no.>
			o for no timeout
	2 REFSW – reference switch	0 ^{*2}	<no. for="" of="" ticks*="" timeout="">,</no.>
			o for no timeout
	3 LIMSW – limit switch	0 ^{*2}	<no. for="" of="" ticks*="" timeout="">,</no.>
			o for no timeout
	4 RFS – reference search	0 ^{*2}	<no. for="" of="" ticks*="" timeout="">,</no.>
	completed		o for no timeout

*1 One tick is 10msec (in standard firmware).

*² Motor number is always o as only one motor is involved.

Example:

Wait for motor to reach its target position, without timeout *Mnemonic:* WAIT POS, o, o

Byte Index	0	1	2	3	4	5	6	7	8
Function	Target-	Instruction	Туре	Motor/	Operand	Operand	Operand	Operand	Checksum
	address	Number		Bank	Byte3	Bytez	Byteı	Byteo	
Value (hex)	\$01	\$1b	\$01	\$01	\$oo	\$oo	\$oo	\$oo	\$1d

6.7.23 STOP (stop TMCL™ program execution)

This function stops executing a TMCL[™] program. The host address and the reply are only used to transfer the instruction to the TMCL[™] program memory.

Every stand-alone TMCL™ program needs the STOP command at its end. It is not to be used in direct mode.

Internal function: TMCL[™] instruction fetching is stopped.

Related commands: none Mnemonic: STOP

Binary representation:

INSTRUCTION NO.	ТҮРЕ	MOT/BANK	VALUE
28	(don't care)	(don't care)	(don't care)

Example:

Mnemonic: STOP

Byte Index	0	1	2	3	4	5	6	7	8
Function	Target-	Instruction	Туре	Motor/	Operand	Operand	Operand	Operand	Checksum
	address	Number		Bank	Byte3	Bytez	Byte1	Byteo	
Value (hex)	\$01	\$1C	\$00	\$00	\$00	\$00	\$00	\$00	\$1d

6.7.24 SCO (set coordinate)

Up to 20 position values (coordinates) can be stored for every axis for use with the MVP COORD command. This command sets a coordinate to a specified value.

Please note that the coordinate number o is always stored in RAM only. All others are also stored in the EEPROM.

Internal function: The passed value is stored in the internal position array.

Related commands: GCO, CCO, MVP

Mnemonic: SCO <coordinate number>, <motor number>, <position>

Binary representation:

INSTRUCTION NO.	ТҮРЕ	MOT/BANK	VALUE
30	<coordinate number=""></coordinate>	0*	<position></position>
	(0 20)		(-2 ²³ +2 ²³)

* Motor number is always o as only one motor is involved.

Reply in direct mode:

STATUS	VALUE
100 - OK	(don't care)

Example:

Set coordinate #1 of motor to 1000 Mnemonic: SCO 1, 0, 1000

Byte Index	0	1	2	3	4	5	6	7	8
Function	Target-	Instruction	Туре	Motor/	Operand	Operand	Operand	Operand	Checksum
	address	Number		Bank	Byte3	Bytez	Byte1	Byteo	
Value (hex)	\$01	\$1e	\$01	\$00	\$oo	\$oo	\$o3	\$e8	\$ob

6.7.25 GCO (get coordinate)

This command makes possible to read out a previously stored coordinate. In stand-alone mode the requested value is copied to the accumulator register for further processing purposes such as conditioned jumps. In direct mode, the value is only output in the value field of the reply, without affecting the accumulator.

Please note that the coordinate number o is always stored in RAM only. All others are also stored in the EEPROM.

Internal function: The desired value is read out of the internal coordinate array, copied to the accumulator register and -in direct mode- returned in the *value* field of the reply.

Related commands: SCO, CCO, MVP

Mnemonic: GCO <coordinate number>, <motor number>

Binary representation:

INSTRUCTION NO.	ТҮРЕ	MOT/BANK	VALUE
31	<coordinate number=""> (o 20)</coordinate>	0*	(don't care)

* Motor number is always o as only one motor is involved.

Reply in direct mode:

STATUS	VALUE
100 - OK	(don't care)

Example:

Get value coordinate 1 of motor *Mnemonic:* GCO 1, 0

Binary:

Byte Index	0	1	2	3	4	5	6	7	8
Function	Target-	Instruction	Туре	Motor/	Operand	Operand	Operand	Operand	Checksum
	address	Number		Bank	Byte3	Bytez	Byte1	Byteo	
Value (hex)	\$01	\$1f	\$01	\$00	\$00	\$oo	\$00	\$00	\$21

Reply:

Byte Index	0	1	2	3	4	5	6	7	8
Function	Target-	Target-	Status	Instruction	Operand	Operand	Operand	Operand	Checksum
	address	address			Byte3	Bytez	Byte1	Byteo	
Value (hex)	\$o2	\$01	\$64	\$oa	\$00	\$00	\$00	\$oo	\$86

⇒ Value: o

6.7.26 CCO (capture coordinate)

The actual position of the axis is copied to the selected coordinate variable.

Please note that the coordinate number o is always stored in RAM only. All others are also stored in the EEPROM.

Internal function: The selected (24 bit) position values are written to the 20 by 3 bytes wide coordinate array.

Related commands: SCO, GCO, MVP

Mnemonic: CCO <coordinate number>, <motor number>

Binary representation:

INSTRUCTION NO.	ТҮРЕ	MOT/BANK	VALUE	
32	<coordinate number=""></coordinate>	0*	(don't care)	
	(020)			

* Motor number is always o as only one motor is involved.

Reply in direct mode:

STATUS	VALUE
100 - OK	(don't care)

Example:

Store current position of the axis to coordinate 3 *Mnemonic:* CCO 3, o

Byte Index	0	1	2	3	4	5	6	7	8
Function	Target-	Instruction	Туре	Motor/	Operand	Operand	Operand	Operand	Checksum
	address	Number		Bank	Byte3	Bytez	Byte1	Byteo	
Value (hex)	\$01	\$20	\$o3	\$00	\$00	\$00	\$00	\$00	\$24

6.7.27 CALCX (calculate using the X register)

This instruction is very similar to CALC, but the second operand comes from the X register. The X register can be loaded with the LOAD or the SWAP type of this instruction. The result is written back to the accumulator for further processing like comparisons or data transfer.

Related commands: CALC, COMP, JC, AAP, AGP

Mnemonic: CALCX <operation>

with <operation>=ADD|SUB|MUL|DIV|MOD|AND|OR|XOR|NOT|LOAD|SWAP

Binary representation:

INSTRUCTION NO.	ТҮРЕ	MOT/BANK	VALUE
33	o ADD – add X register to accu	(don't care)	(don't care)
	1 SUB – subtract X register from accu		
	2 MUL – multiply accu by X register		
	3 DIV – divide accu by X-register		
	4 MOD – modulo divide accu by x-register		
	5 AND – logical and accu with X-register		
	6 OR – logical or accu with X-register		
	7 XOR – logical exor accu with X-register		
	8 NOT – logical invert X-register		
	9 LOAD – load accu to X-register		
	10 SWAP – swap accu with X-register		

Example:

Multiply accu by X-register Mnemonic: CALCX MUL

Byte Index	0	1	2	3	4	5	6	7	8
Function	Target-	Instruction	Type	Motor/	Operand	Operand	Operand	Operand	Checksum
	address	Number		Bank	Byte3	Bytez	Byte1	Byteo	
Value (hex)	\$01	\$21	\$o2	\$00	\$00	\$00	\$00	\$00	\$24

6.7.28 AAP (accumulator to axis parameter)

The content of the accumulator register is transferred to the specified axis parameter. For practical usage, the accumulator has to be loaded e.g. by a preceding GAP instruction. The accumulator may have been modified by the CALC or CALCX (calculate) instruction.

Related commands: AGP, SAP, GAP, SGP, GGP, GIO, GCO, CALC, CALCX

Mnemonic: AAP <parameter number>, <motor number>

Binary representation:

INSTRUCTION NO.	ТҮРЕ	MOT/BANK	VALUE
34	<parameter number></parameter 	0*	<don't care=""></don't>

* Motor number is always o as only one motor is involved.

Reply in direct mode:

STATUS	VALUE
100 – OK	(don't care)

List of parameters, which can be used for AAP:

Number	Axis Parameter	Description
0	target (next)	The desired position in position mode (see
	position	ramp mode, no. 138).
1	actual position	The current position of the motor. Should
		only be overwritten for reference point
		setting.
2	target (next)	The desired speed in velocity mode (see ramp
	speed	mode, no. 138). In position mode, this
		parameter is set by hardware: to the
		maximum speed during acceleration, and to
		zero during deceleration and rest.
3	actual speed	The current rotation speed.
4	maximum	Should not exceed the physically highest
	positioning	possible value. Adjust the pulse divisor (no.
	speed	154), if the speed value is very low (<50) or
		above the upper limit. See IMC 428 datasheet
		for calculation of physical units.
5	maximum	The limit for acceleration (and deceleration).
	acceleration	Changing this parameter requires re-
		calculation of the acceleration factor (no. 146)
		and the acceleration divisor (no. 13/), which is
		colculation of physical units
6	absolute max	The most important motor setting since too
0	absolute max.	high values might cause motor damagel The
	current	maximum value is 255 (which mean 100% of
		the maximum current of the module)
7	standby current	The current limit two seconds after the motor
'		has stopped.
12	right limit switch	If set, deactivates the stop function of the
	disable	right switch
13	left limit switch	Deactivates the stop function of the left
-	disable	switch resp. reference switch if set.

Number	Axis Parameter	Description
130	minimum speed	Should always be set 1 to ensure exact reaching of the target position. Do not change!
138	ramp mode	Automatically set when using ROR, ROL, MST and MVP. o: position mode. Steps are generated, when the parameters actual position and target position differ. Trapezoidal speed ramps are provided. 2: velocity mode. The motor will run continuously and the speed will be changed with constant (maximum) acceleration, if the parameter <i>target speed</i> is changed. For special purposes, the soft mode (value 1) with exponential decrease of speed can be selected.
140	microstep resolution	 o - full step*) 1 - half step*) 2 - 4 microsteps 3 - 8 microsteps 4 - 16 microsteps 5 - 32 microsteps**) 6 - 64 microsteps**) Note that modifying this parameter will affect the rotation speed in the same relation: *) The full-step setting and the half-step setting are not optimized for use without an adapted microstepping table. These settings just step through the microstep table in steps of 64 respectively 32. To get real full stepping use axis parameter 211 or load an adapted microstepping table. **) If the module is specified for 16 microsteps only, switching to 32 or 64 microsteps brings an enhancement in resolution and smoothness. The position counter will use the full resolution, but, however, the motor will resolve a maximum of 24 different microsteps only for the 32 or 64 microstep units.
141	ref. switch tolerance	For three-switch mode: a position range, where an additional switch (connected to the REFL input) won't cause motor stop. See section 9.1 for details.
149	soft stop flag	If cleared, the motor will stop immediately (disregarding motor limits), when the reference or limit switch is hit.
153	ramp divisor	The exponent of the scaling factor for the ramp generator- should be de/incremented carefully (in steps of one).
154	pulse divisor	The exponent of the scaling factor for the pulse (step) generator – should be de/incremented carefully (in steps of one).

Number	Axis Parameter	Description
193	referencing mode	1 – Only the left reference switch is searched. 2 – The right switch is searched and
		afterwards the left switch is searched.
		3 – Three-switch-mode: the right switch is
		searched first and afterwards the reference
		switch will be searched.
		Please see chapter 6.7.13 for details on
104	referencing	For the reference search this value specifies
194	search sneed	the search speed as a fraction of the
	Scarch Speed	maximum velocity.
		o – full speed
		1 – half of the maximum speed
		2 – a quarter of the maximum speed
		3 – 1/8 of the maximum speed (etc.)
195	referencing	Similar to parameter no. 194, the speed for
	switch speed	the switching point calibration can be
		selected.
203	mixed decay	If the actual velocity is above this threshold,
	threshold	mixed decay will be used. This can also be set
		to -1 which turns on mixed decay
		permanently also in the fising part of the
		microstep wave. This can be used to fix
204	freewheeling	Time after which the power to the motor will
		be cut when its velocity has reached zero.
205	stall detection	Stall detection threshold. Set it to o for no
	threshold	stall detection or to a value between 1 (low
		threshold) and 7 (high threshold). The motor
		will be stopped if the load value exceeds the
		stall detection threshold. Switch off mixed
	<u>с н.</u>	decay to get usable results.
211	fullstep	when exceeding this speed the driver will
	threshold	switch to real full step mode. To disable this
		value greater than 2047
		Setting a full step threshold allows higher
		motor torque of the motor at higher velocity
		When experimenting with this in a given
		application, try to reduce the motor current in
		order to be able to reach a higher motor
		velocity!
214	power down	Standstill period before the current is changed
	delay	down to standby current. The standard value
		is 200 (value equates 2000msec).

Example:

Positioning motor by a potentiometer connected to the analogue input #0:

Start:	GIO 0,1	II get value of analogue input line o
	CALC MUL, 4	// multiply by 4
	AAP o,o	// transfer result to target position of motor o
	JA Start	II jump back to start

Byte Index	0	1	2	3	4	5	6	7	8
Function	Target-	Instruction	Туре	Motor/	Operand	Operand	Operand	Operand	Checksum
	address	Number		Bank	Byte3	Bytez	Byte1	Byteo	
Value (hex)	\$01	\$22	\$00	\$00	\$oo	\$oo	\$oo	\$00	\$23

Binary format of the AAP 0,0 command:

6.7.29 AGP (accumulator to global parameter)

The content of the accumulator register is transferred to the specified global parameter. For practical usage, the accumulator has to be loaded e.g. by a preceding GAP instruction. The accumulator may have been modified by the CALC or CALCX (calculate) instruction. **Note that the global parameters in bank o are EEPROM-only and thus should not be modified automatically by a stand-alone application.** (See chapter 8 for a complete list of global parameters).

Related commands: AAP, SGP, GGP, SAP, GAP, GIO

Mnemonic: AGP <parameter number>, <bank number>

Binary representation:

INSTRUCTION NO.	ТҮРЕ	MOT/BANK	VALUE
35	<parameter number></parameter 	<bank number=""></bank>	(don't care)

Reply in direct mode:

STATUS	VALUE
100 - OK	(don't care)

Global parameters of bank o, which can be used for AGP:

Number	Global parameter	Description		
64	EEPROM magic	Setting this parameter to a different value as \$E4 will		
		cause re-initialization of the axis and global parameters		
		(to factory defaults) after the next power up. This is useful in case of miss-configuration.		
65	RS232 baud rate	0	9600 baud	Default
		1	14400 baud	
		2	19200 baud	
		3	28800 baud	
		4	38400 baud	
		5	57600 baud	
		6	76800 baud	Not supported by Windows!
		7	(115200 baud)	3.68% Error (111111 Bits/s)
66	serial address	The module (target) address for RS-232.		
67	ASCII mode	Configure the TMCL [™] ASCII interface: Bit o: o - start up in binary (normal) mode 1 - start up in ASCII mode Bits 4 and 5: oo - Echo back each character o1 - Echo back complete command		
-	CANLLY	10 – l	J – Do not sena ecno, only sena command reply	
69	CAN bit rate	1	10kBit/s	
		2	20kBit/s	
		3	50kBit/s	
		_4	100kBit/s	
		_5	125kBit/s	
		6	250kBit/s	Default
		7	500kBit/s	
		8	1000kBit/s	
70	CAN reply ID	The weedule (here a) a damage ((A) (L ())		
71	CAN ID	ine module (target) address for CAN (default: 1)		
73	configuration EEPROM	flag Read: 1=EEPROM locked, o=EEPROM unlocked.		
	іоск тіад			
Number	Global parameter	Description		
--------	-----------------------------------	---		
75	telegram pause time	Pause time before the reply via RS232 is sent. For RS232		
		set to 0.		
		For CAN interface this parameter has no effect!		
76	serial host address	Host address used in the reply telegrams sent back via RS232.		
77	auto start mode	o: Do not start TMCL [™] application after power up (default).		
		1: Start TMCL [™] application automatically after power up.		
80	shutdown pin	Select the functionality of the SHUTDOWN pin		
	functionality	o – no function		
		1 – high active		
		2 – low active		
81	TMCL [™] code protection	Protect a TMCL [™] program against disassembling or		
		overwriting.		
		o – no protection		
		1 – protection against disassembling		
		2 – protection against overwriting		
		3 – protection against disassembling and overwriting		
		If you switch off the protection against		
		disassembling, the program will be erased first!		
		Changing this value from 1 or 3 to 0 or 2, the TMCL™		
		program will be wiped off.		
83	CAN secondary address	Second CAN ID for the module. Switched off when set to		
		zero.		
84	coordinate storage	o – coordinates are stored in the RAM only (but can be		
		copied explicitly between RAM and EEPROM)		
		1 – coordinates are always stored in the EEPROM only		
132	tick timer	A 32 bit counter that gets incremented by one every		
		millisecond. It can also be reset to any start value		

Global parameters of bank 1, which can be used for SGP:

The global parameter bank 1 is normally not available. It may be used for customer specific extensions of the firmware. Together with user definable commands (see section 7.3) these variables form the interface between extensions of the firmware (written in C) and TMCL^{TM} applications.

Global parameters of bank 2, which can be used for AGP:

Bank 2 contains general purpose 32 bit variables for the use in TMCL[™] applications. They are located in RAM and can be stored to EEPROM. After booting, their values are automatically restored to the RAM.

Number	Global parameter	Description	Range
0	general purpose variable #o	for use in TMCL™ applications	-2 ³¹ +2 ³¹
1	general purpose variable #1	for use in TMCL™ applications	-2 ³¹ +2 ³¹
2	general purpose variable #2	for use in TMCL™ applications	-2 ³¹ +2 ³¹
3	general purpose variable #3	for use in TMCL™ applications	-2 ³¹ +2 ³¹
4	general purpose variable #4	for use in TMCL™ applications	-2 ³¹ +2 ³¹
5	general purpose variable #5	for use in TMCL™ applications	-2 ³¹ +2 ³¹
6	general purpose variable #6	for use in TMCL™ applications	-2 ³¹ +2 ³¹
7	general purpose variable #7	for use in TMCL™ applications	-2 ³¹ +2 ³¹
8	general purpose variable #8	for use in TMCL™ applications	-2 ³¹ +2 ³¹
9	general purpose variable #9	for use in TMCL™ applications	-2 ³¹ +2 ³¹
10	general purpose variable #10	for use in TMCL™ applications	-2 ³¹ +2 ³¹
11	general purpose variable #11	for use in TMCL™ applications	-2 ³¹ +2 ³¹
12	general purpose variable #12	for use in TMCL™ applications	-2 ³¹ +2 ³¹
13	general purpose variable #13	for use in TMCL™ applications	-2 ³¹ +2 ³¹
14	general purpose variable #14	for use in TMCL™ applications	-2 ³¹ +2 ³¹
15	general purpose variable #15	for use in TMCL™ applications	-2 ³¹ +2 ³¹
16	general purpose variable #16	for use in TMCL™ applications	-2 ³¹ +2 ³¹
17	general purpose variable #17	for use in TMCL™ applications	-2 ³¹ +2 ³¹
18	general purpose variable #18	for use in TMCL™ applications	-2 ³¹ +2 ³¹
19	general purpose variable #19	for use in TMCL™ applications	-2 ³¹ +2 ³¹
2055	general purpose variables	for use in TMCL™ applications	-2 ³¹ +2 ³¹
	#20#55		

Please refer to chapter 8 for more information about bank 0 to 2.

Example:

Copy accumulator to TMCL[™] user variable #3 *Mnemonic:* AGP 3, 2

Binary:

Byte Index	0	1	2	3	4	5	6	7	8
Function	Target-	Instruction	Туре	Motor/	Operand	Operand	Operand	Operand	Checksum
	address	Number		Bank	Byte3	Byte2	Byte1	Byteo	
Value (hex)	\$01	\$23	\$o3	\$o2	\$00	\$00	\$00	\$00	\$29

6.7.30 CLE (clear error flags)

This command clears the internal error flags. It is intended for use in stand-alone mode only and must not be used in direct mode.

The following error flags can be cleared by this command (determined by the <flag> parameter):

- ALL: clear all error flags.
- ETO: clear the timeout flag.
- EAL: clear the external alarm flag
- EDV: clear the deviation flag (modules with encoder feedback only)
- EPO: clear the position error flag (modules with encoder feedback only)

Related commands: JC

Mnemonic: CLE <flags>

where <flags>=ALL|ETO|EDV|EPO

Binary representation:

INSTRUCTION NO.	ТҮРЕ	MOT/BANK	VALUE
36	o – (ALL) all flags 1 – (ETO) timeout flag 2 – (EAL) alarm flag 3 – (EDV) deviation flag 4 – (EPO) position flag 5 – (ESD) shutdown flag	(don't care)	(don't care)

Example:

Reset the timeout flag Mnemonic: CLE ETO

Binary:

Byte Index	0	1	2	3	4	5	6	7	8
Function	Target-	Instruction	Туре	Motor/	Operand	Operand	Operand	Operand	Checksum
	address	Number		Bank	Byte3	Bytez	Byte1	Byteo	
Value (hex)	\$01	\$24	\$01	\$00	\$oo	\$oo	\$oo	\$00	\$26

6.7.31 Customer specific TMCL[™] command extension (UFo...UF7/user function)

The user definable functions UFo...UF7 are predefined, functions without topic for user specific purposes. Contact TRINAMIC for customer specific programming of these functions.

Internal function: Call user specific functions implemented in C by TRINAMIC.

Related commands: none

Mnemonic: UFo...UF7

Binary representation:

INSTRUCTION NO.	ТҮРЕ	MOT/BANK	VALUE
6471	(user defined)	(user defined)	(user defined)

Reply in direct mode:

Byte Index	0	1	2	3	4	5	6	7	8
Function	Target-	Target-	Status	Instruction	Operand	Operand	Operand	Operand	Checksum
	address	address			Byte3	Bytez	Byteı	Byteo	
Value (hex)	\$oz	\$01	(user	6471	(user	(user	(user	(user	<checksum< th=""></checksum<>
			defined)		defined)	defined)	defined)	defined)	>

6.7.32 Request target position reached event

This command is the only exception to the TMCL[™] protocol, as it sends two replies: One immediately after the command has been executed (like all other commands also), and one additional reply that will be sent when the motor has reached its target position.

This instruction can only be used in direct mode (in stand alone mode, it is covered by the WAIT command) and hence does not have a mnemonic.

Internal function: Send an additional reply when the motor has reached its target position

Mnemonic: ---

Binary representation:

INSTRUCTION NO.	ТҮРЕ	MOT/BANK	VALUE
138	(don't care)	(don't care)	1 Or 0

The value field contains a bit mask where every bit stands for one motor:

bit o = motor o (as only one motor is involved.)

Reply in direct mode (right after execution of this command):

Byte Index	0	1	2	3	4	5	6	7	8
Function	Target-	Target-	Status	Instruction	Operand	Operand	Operand	Operand	Checksum
	address	address			Byte3	Bytez	Byte1	Byteo	
Value (hex)	\$o2	\$01	100	138	\$00	\$00	\$00	Motor bit	<checksum< th=""></checksum<>
								mask	>

The additional reply will be sent when all chosen motors have reached their target positions.

Additional reply in direct mode (after motors have reached their target positions):

Byte Index	0	1	2	3	4	5	6	7	8
Function	Target-	Target-	Status	Instruction	Operand	Operand	Operand	Operand	Checksum
	address	address			Byte3	Bytez	Byte1	Byteo	
Value (hex)	\$oz	\$01	128	138	\$00	\$00	\$oo	Motor bit	<checksum< th=""></checksum<>
								mask	>

6.7.33 BIN (return to binary mode)

This command can only be used in ASCII mode. It quits the ASCII mode and returns to binary mode.

Related Commands: none

Mnemonic: BIN

Binary representation: This command does not have a binary representation as it can only be used in ASCII mode.

6.7.34 TMCL[™] Control Functions

The following functions are for host control purposes only and are not allowed for stand-alone mode. In most cases, there is no need for the customer to use one of those functions (except command 139). They are mentioned here only for reasons of completeness. These commands have no mnemonics, as they cannot be used in TMCLTM programs. The Functions are to be used only by the TMCL-IDE to communicate with the module, for example to download a TMCLTM application into the module.

The only control commands that could be useful for a user host application are:

- get firmware revision (command 136, please note the special reply format of this command, described at the end of this section)
- run application (command 129)

All other functions can be achieved by using the appropriate functions of the TMCL™ IDE.

Instruction	Description	Туре	Mot/Bank	Value
128 – stop application	a running TMCL™ standalone application is stopped	(don't care)	(don't care)	(don't care)
129 – run application	TMCL [™] execution is started (or	o - run from	(don't care)	(don't care)
	continued)	1 - run from specified address		starting address
130 – step application	only the next command of a TMCL™ application is executed	(don't care)	(don't care)	(don't care)
131 – reset application	the program counter is set to zero, and the standalone application is stopped (when running or stepped)	(don't care)	(don't care)	(don't care)
132 – start download mode	target command execution is stopped and all following commands are transferred to the TMCL™ memory	(don't care)	(don't care)	starting address of the application
133 – quit download mode	target command execution is resumed	(don't care)	(don't care)	(don't care)
134 – read TMCL™ memory	the specified program memory location is read	(don't care)	(don't care)	<memory address=""></memory>
135 – get application status	one of these values is returned: 0 – stop 1 – run 2 – step 3 – reset	(don't care)	(don't care)	(don't care)
136 – get firmware version	return the module type and firmware revision either as a string or in binary format	0 – string 1 – binary	(don't care)	(don't care)
137 – restore factory settings	reset all settings stored in the EEPROM to their factory defaults This command does not send back a reply.	(don't care)	(don't care)	must be 1234
138 – reserved				
139 – enter ASCII mode	Enter ASCII command line (see chapter 6.6)	(don't care)	(don't care)	(don't care)

Special reply format of command 136:

Type set to o - reply as a string:

Byte index	Contents
1	Host Address
29	Version string (8 characters, e.g. 140V2.50

- There is no checksum in this reply format!
- To get also the last byte when using the CAN bus interface, just send this command in an eight byte frame instead of a seven byte frame. Then, eight bytes will be sent back, so you will get all characters of the version string.

Type set to 1 - version number in binary format:

- Please use the normal reply format.
- The version number is output in the *value* field of the reply in the following way:

Byte index in value field	Contents
1	Version number, low byte
2	Version number, high byte
3	Type number, low byte
	(currently not used)
4	Type number, high byte
	(currently not used)

7 Axis parameters

The following sections describe all axis parameters that can be used with the SAP, GAP, AAP, STAP and RSAP commands.

Meaning of the letters in column Access:

R = readable (GAP) W = writable (SAP) E = automatically restored from EEPROM after reset or power-on

7.1 Axis parameters

Number	Axis Parameter	Description	Range [Unit]	Acc.
0	target (next)	The desired position in position mode (see	± 2 ²³	RW
	position	ramp mode, no. 138).	[µsteps]	
1	actual position	The current position of the motor. Should	± 2 ²³	RW
		only be overwritten for reference point	[µsteps]	
		setting.		
2	target (next)	The desired speed in velocity mode (see ramp	±2047	RW
	speed	mode, no. 138). In position mode, this		
		parameter is set by hardware: to the	$\left[\frac{16\text{MHz}}{65526} \cdot 2^{\text{PD}} \frac{\mu \text{steps}}{200}\right]$	
		maximum speed during acceleration, and to	[05550 Sec]	
		zero during deceleration and rest.		
3	actual speed	The current rotation speed.	±2047	RW
			$\frac{16MHz}{65536} \cdot 2^{PD} \frac{\mu steps}{soc}$	
4	maximum	Should not exceed the physically highest	02047	RWE
•	positioning	possible value. Adjust the pulse divisor (no.		
	speed	154), if the speed value is very low (<50) or	[16MHz . 2PD µsteps]	
	•	above the upper limit. See TMC 428 datasheet	[65536 ² sec]	
		for calculation of physical units.		
5	maximum	The limit for acceleration (and deceleration).	0 2047	RWE
	acceleration	Changing this parameter requires re-		
		calculation of the acceleration factor (no. 146)	$\left[\frac{16 \text{MHz}}{1000 \text{ m}^2} \cdot 2^{\text{PD}} + 2^{\text{PD}} \right]$	
		and the acceleration divisor (no. 137), which is	[65536 sec]	
		done automatically. See TMC 428 datasheet for		
		calculation of physical units.		
6	absolute max.	The most important motor setting, since too	0255	RWE
	current	high values might cause motor damage! The		
		maximum value is 255 (which mean 100% of	[mA]	
		the maximum current of the module).		
7	standby current	The current limit two seconds after the motor	0255	RWE
		has stopped.	[mA]	
8	target pos.	Indicates that the actual position equals the	0/1	к
	reached	target position.	-1	D
9	ref. switch status	The logical state of the reference (left) switch.	0/1	ĸ
		See the IMC 428 data sheet for the different		
		switch modes. The default has two switch		
		modes: the tell switch as the reference		
		switch		
10	right limit switch	The logical state of the (right) limit switch	0/1	R
10	status	The togical state of the (light) time switch.	0/1	IX .
11	left limit switch	The logical state of the left limit switch (in	0/1	R
	status	three switch mode)		
12	right limit switch	If set, deactivates the stop function of the	0/1	RWE
	disable	right switch		

Number	Axis Parameter	Description	Range [Unit]	Acc.
13	left limit switch disable	Deactivates the stop function of the left switch resp. reference switch if set.	0/1	RWE
130	minimum speed	Should always be set 1 to ensure exact reaching of the target position. Do not change!	$\frac{02047}{\left[\frac{16MHz}{65536} \cdot 2^{PD} \frac{\mu steps}{sec}\right]}$	RWE
135	actual acceleration	The current acceleration (read only).	0 2047*	R
138	ramp mode	Automatically set when using ROR, ROL, MST and MVP. o: position mode. Steps are generated, when the parameters actual position and target position differ. Trapezoidal speed ramps are provided. 2: velocity mode. The motor will run continuously and the speed will be changed with constant (maximum) acceleration, if the parameter <i>target speed</i> is changed. For special purposes, the soft mode (value 1) with exponential decrease of speed can be selected.	0/1/2	RWE
140	microstep resolution	 o - full step*) 1 - half step*) 2 - 4 microsteps 3 - 8 microsteps 4 - 16 microsteps 5 - 32 microsteps**) 6 - 64 microsteps **) Note that modifying this parameter will affect the rotation speed in the same relation: *) The full-step setting and the half-step setting are not optimized for use without an adapted microstepping table. These settings just step through the microstep table in steps of 64 respectively 32. To get real full stepping use axis parameter 211 or load an adapted microstepping table. **) If the module is specified for 16 microsteps only, switching to 32 or 64 microsteps brings an enhancement in resolution and smoothness. The position counter will use the full resolution, but, however, the motor will resolve a maximum of 24 different microsteps only for the 32 or 64 microstep units. 	06	RWE
141	ref. switch tolerance	For three-switch mode: a position range, where an additional switch (connected to the REFL input) won't cause motor stop. See section 9.1 for details.	04095	RWE
149	soft stop flag	If cleared, the motor will stop immediately (disregarding motor limits), when the reference or limit switch is hit.	0/1	RWE
153	ramp divisor	The exponent of the scaling factor for the ramp generator- should be de/incremented carefully (in steps of one).	013	RWE

Number	Axis Parameter	Description	Range [Unit]	Acc.
154	pulse divisor	The exponent of the scaling factor for the	013	RWE
		pulse (step) generator – should be		
193	referencing mode	 1 - Only the left reference switch is searched. 2 - The right switch is searched and afterwards the left switch is searched. 3 - Three-switch-mode: the right switch is searched first and afterwards the reference switch will be searched. 	1/2/3	RWE
		Please see chapter 6.7.13 for details on reference search.		
194	referencing search speed	For the reference search this value specifies the search speed as a fraction of the maximum velocity: 0 - full speed 1 - half of the maximum speed 2 - a quarter of the maximum speed 3 - 1/8 of the maximum speed (etc.)	08	RWE
195	referencing switch speed	Similar to parameter no. 194, the speed for the switching point calibration can be selected.	08	RWE
203	mixed decay threshold	If the actual velocity is above this threshold, mixed decay will be used. This can also be set to -1 which turns on mixed decay permanently also in the rising part of the microstep wave. This can be used to fix microstep errors.	02048 or -1 $\left[\frac{16MHz}{65536} \cdot 2^{PD} \frac{\mu steps}{sec}\right]$	RWE
204	freewheeling	Time after which the power to the motor will be cut when its velocity has reached zero.	065535 0 = never [msec]	RWE
205	stall detection threshold	Stall detection threshold. Set it to 0 for no stall detection or to a value between 1 (low threshold) and 7 (high threshold). The motor will be stopped if the load value exceeds the stall detection threshold. Switch off mixed decay to get usable results.	07	RWE
206	actual load value	Readout of the actual load value used for stall detection.	07	R
208	driver error flags	TMC236 error flags.		R
211	fullstep threshold	When exceeding this speed the driver will switch to real full step mode. To disable this feature set this parameter to zero or to a value greater than 2047. Setting a full step threshold allows higher motor torque of the motor at higher velocity. When experimenting with this in a given application, try to reduce the motor current in order to be able to reach a higher motor velocity!	02048 $\left[\frac{16\text{MHz}}{65536} \cdot 2^{\text{PD}} \frac{\mu \text{steps}}{\text{sec}}\right]$	RWE
214	power down delay	Standstill period before the current is changed down to standby current. The standard value is 200 (value equates 2000msec).	1 65535 [10msec]	RWE

* Unit of acceleration: $\frac{16MHz^2}{536870912 \cdot 2^{puls} \cdot divisor + ramp_divisor} \frac{\text{microsteps}}{\text{sec}^2}$

Please use the TMCL-IDE axis parameter calculation tool for getting best values.

8 Global parameters

The global parameters apply for all types of TMCM modules.

They are grouped into 3 banks:

- bank o (global configuration of the module)
- bank 1 (normally not available; for customer specific extensions of the firmware)
- bank 2 (user TMCL[™] variables)

Please use SGP and GGP commands to write and read global parameters. Further you can use the STGP command in order to store TMCL[™] user variables permanently in the EEPROM of the module. With the RSGP command the contents of a user variable can be restored from the EEPROM, if this is necessary.

8.1 Bank o

Parameters 0...38

The first parameters 0...38 are only mentioned here for completeness. They are used for the internal handling of the TMCL-IDE and serve for loading micro step and driver tables. Normally these parameters remain untouched. *If you want to use them for loading your specific values with your PC software please contact TRINAMIC and ask how to do this. Otherwise you might cause damage on the motor driver!*

Number	Parameter
0	datagram low word (read only)
1	datagram high word (read only)
2	cover datagram position
3	cover datagram length
4	cover datagram contents
5	reference switch states (read only)
6	TMC428 SMGP register
722	driver chain configuration long words 015
2338	microstep table long word 015

Parameters 64...132

Parameters with numbers from 64 on configure stuff like the serial address of the module RS232 baud rate or the CAN bit rate. Change these parameters to meet your needs. The best and easiest way to do this is to use the appropriate functions of the TMCL-IDE. The parameters with numbers between 64 and 128 are stored in EEPROM only. A SGP command on such a parameter will always store it permanently and no extra STGP command is needed.

Take care when changing these parameters, and use the appropriate functions of the TMCL-IDE to do it in an interactive way.

Meaning of the letters in column Access:

- R = readable (GGP)
- W = writeable (SGP)
- E = automatically restored from EEPROM after reset or power-on.

Number	Global parameter	Description	Range	Access
64	EEPROM magic	Setting this parameter to a different value as \$E4 will cause re-initialization of the axis and global parameters (to factory defaults) after the next power up. This is	0255	RWE

Number	Global parameter	Description	Range	Access
65	RS232 baud rate	0 9600 baud Default	07	RWE
		1 14400 baud		
		2 19200 baud		
		3 28800 baud		
		4 38400 baud		
		5 57600 baud		
		6 76800 baud Not supported by Windows!		
		7 (115200 baud) 3.68% Error (111111 Bits/s)		
66	serial address	The module (target) address for RS-232.	0255	RWE
67	ASCII mode	Configure the TMCL [™] ASCII interface:		RWE
		Bit o: o – start up in binary (normal) mode		
		1 – start up in ASCII mode		
		Bits 4 and 5:		
		00 - Echo back each character		
		10 - Do not send echo, only send command renly		
60	CAN hit rate	1 10kBit/s	1 7	RW/F
09		2 20kBit/s	1/	
		2 EokBit/s		
		4 100kBit/s		
		E 125//Bit/s		
		6 250kBit/s Default		
		7 FookBit/s		
		8 1000kBit/s		
70	CAN renly ID	The CAN ID for replies from the board (default: 2)	o ⁊ff	RW/F
70	CAN ID	The module (target) address for (AN (default: 1)	07ff	RWF
73	configuration FEPROM	Write: 1234 to lock the FEPROM 4321 to unlock it	0/1	RWF
27	lock flag	Read: 1=EEPROM locked, o=EEPROM unlocked.	0/1	
75	telegram pause time	Pause time before the reply via RS232 is sent. For RS232	0255	RWE
		set to o.		
		For CAN interface this parameter has no effect!		
76	serial host address	Host address used in the reply telegrams sent back via	0255	RWE
		RS232.		
77	auto start mode	o: Do not start TMCL [™] application after power up		RWE
		(default).		
		1: Start TMCL [™] application automatically after power up.		
80	shutdown pin	Select the functionality of the SHUIDOWN pin	02	RWE
	functionality	o – no function		
		1 – nigh active		
04		2 - IOW active		
81	IMCL ^m code protection	Protect a IMCL [®] program against disassembling or	0,1,2,3	RVVE
		overwriting.		
		1 – protection against disassembling		
		2 – protection against overwriting		
		3 – protection against disassembling and overwriting		
		If you switch off the protection against		
		disassembling, the program will be erased first!		
		Changing this value from 1 or 3 to 0 or 2, the TMCL [™]		
		program will be wiped off.		
83	CAN secondary address	Second CAN ID for the module. Switched off when set to	07ff	RWE
		zero.		
84	coordinate storage	o - coordinates are stored in the RAM only (but can be	0 or 1	RWE
	_	copied explicitly between RAM and EEPROM)		
		1 – coordinates are always stored in the EEPROM only		

Number	Global parameter	Description	Range	Access
128	TMCL [™] application	o -stop	03	R
	status	1 – run		
		2 – step		
		3 – reset		
129	download mode	o – normal mode	0/1	R
		1 – download mode		
130	TMCL [™] program	The index of the currently executed TMCL [™] instruction.		R
	counter			
132	tick timer	A 32 bit counter that gets incremented by one every		RW
		millisecond. It can also be reset to any start value.		
133	random number	Choose a random number. <i>Read only!</i>	021474	R
			83647	

8.2 Bank 1

The global parameter bank 1 is normally not available. It may be used for customer specific extensions of the firmware. Together with user definable commands (see section 7.3) these variables form the interface between extensions of the firmware (written in C) and $TMCL^{TM}$ applications.

8.3 Bank 2

Bank 2 contains general purpose 32 bit variables for the use in TMCL[™] applications. They are located in RAM and can be stored to EEPROM. After booting, their values are automatically restored to the RAM.

Up to 56 user variables are available.

Meaning of the letters in column Access:

- R = readable (GGP)
- W = writeable (SGP)
- E = automatically restored from EEPROM after reset or power-on.

Number	Global parameter	Description	Range	Access
0	general purpose variable #o	for use in TMCL™ applications	-2 ³¹ +2 ³¹	RWE
1	general purpose variable #1	for use in TMCL™ applications	-2 ³¹ +2 ³¹	RWE
2	general purpose variable #2	for use in TMCL™ applications	-2 ³¹ +2 ³¹	RWE
3	general purpose variable #3	for use in TMCL [™] applications	-2 ³¹ +2 ³¹	RWE
4	general purpose variable #4	for use in TMCL [™] applications	-2 ³¹ +2 ³¹	RWE
5	general purpose variable #5	for use in TMCL [™] applications	-2 ³¹ +2 ³¹	RWE
6	general purpose variable #6	for use in TMCL™ applications	-2 ³¹ +2 ³¹	RWE
7	general purpose variable #7	for use in TMCL™ applications	-2 ³¹ +2 ³¹	RWE
8	general purpose variable #8	for use in TMCL™ applications	-2 ³¹ +2 ³¹	RWE
9	general purpose variable #9	for use in TMCL™ applications	-2 ³¹ +2 ³¹	RWE
10	general purpose variable #10	for use in TMCL™ applications	-2 ³¹ +2 ³¹	RWE
11	general purpose variable #11	for use in TMCL™ applications	-2 ³¹ +2 ³¹	RWE
12	general purpose variable #12	for use in TMCL™ applications	-2 ³¹ +2 ³¹	RWE
13	general purpose variable #13	for use in TMCL™ applications	-2 ³¹ +2 ³¹	RWE
14	general purpose variable #14	for use in TMCL™ applications	-2 ³¹ +2 ³¹	RWE
15	general purpose variable #15	for use in TMCL™ applications	-2 ³¹ +2 ³¹	RWE
16	general purpose variable #16	for use in TMCL™ applications	-2 ³¹ +2 ³¹	RWE
17	general purpose variable #17	for use in TMCL™ applications	-2 ³¹ +2 ³¹	RWE
18	general purpose variable #18	for use in TMCL™ applications	-2 ³¹ +2 ³¹	RWE
19	general purpose variable #19	for use in TMCL™ applications	-2 ³¹ +2 ³¹	RWE
2055	general purpose variables #20#55	for use in TMCL™ applications	-2 ³¹ +2 ³¹	RWE

9 Hints and tips

This chapter gives some hints and tips on using the functionality of TMCL, for example how to use and parameterize the built-in reference point search algorithm.

9.1 Reference search

The built-in reference search features switching point calibration and supports of one reference switch per axis. The internal operation is based on three individual state machines (one per axis) that can be started, stopped and monitored (instruction RFS, no. 13). The settings of the automatic stop functions corresponding to the switches (axis parameters 12 and 13) do not have any influence on the reference search.

Definition of the switches

- Selecting the referencing mode (axis parameter 193): in modes 1 and 2, the motor will start by moving *left* (negative position counts). In mode 3 (three-switch mode), the right stop switch is searched first to distinguish the left stop switch from the reference switch by the order of activation when moving left (reference switch and left limit switch share the same electrical function).
- Until the reference switch is found for the first time, the searching speed is identical to the maximum positioning speed (axis parameter 4), unless reduced by axis parameter 194.
- After hitting the reference switch, the motor slowly moves right until the switch is released. Finally the switch is re-entered in left direction, setting the reference point to the center of the two switching points. This low calibrating speed is a quarter of the maximum positioning speed by default (axis parameter 195).
- In Figure 9.1 the connection of the left and the right limit switch is shown. Figure 9.2 shows the connection of three switches as left and right limit switch and a reference switch for the reference point. The reference switch is connected in series with the left limit switch. The differentiation between the left limit switch and the reference switch is made through software. Switches with open contacts (normally closed) are used.
- In circular systems there are no end points and thus only one reference switch is used for finding the reference point.

Figure 9.1: Two limit switches

REFRX

Figure 9.2: Limit switches with extra reference switch

Figure 9.3: Circular system

9.2 Stall detection

The TMCM-110 is offered with stallGuard[™]. In this case the module is equipped with a TMC246 motor driver chip, which features load measurement that can be used for stall detection. Stall detection means that the motor will be stopped when the load gets too high. It is controlled by axis parameter #205. If this parameter is set to a value between 1 and 7 the stall detection will be activated. Setting it to 0 means that stall detection is turned off. A greater value means a higher threshold. This also depends on the motor and on the velocity. There is no stall detection while the motor is being accelerated or decelerated.

Stall detection can also be used for finding the reference point. You can do this by using the following TMCL[™] code:

```
SAP 205, 0, 5 //Turn on Stall Detection (use other threshold if needed)
ROL 0, 500 //Let the motor run (or use ROR or other velocity)
Loop: GAP 3, 0
COMP 0
JC NE, Loop //Wait until the motor has stopped
SAP 1, 0, 0 //Set this position as the zero position
```

Do not use RFS in this case.

Mixed decay should be switched off when stallGuard[™] is operational in order to get usable results.

9.3 Fixing microstep errors

Due to the zero crossing problem of the TMC246 stepper motor drivers, microstep errors may occur with some motors as the minimum motor current that can be reached is slightly higher than zero (depending on the inductivity, resistance and supply voltage of the motor).

This can be solved by setting the *mixed decay threshold* parameter (axis parameter number 203) to the value -1. This switches on mixed decay permanently, in every part of the microstepping waveform. Now the minimum reachable motor current is always near zero which gives better microstepping results. A further optimization is possible by adapting the motor current shape. (For further information about TMCL-IDE please refer to the TMCLTM reference and programming manual.)

Use SAP 203, <motor number>, -1 to turn on this feature.

10 Revision history

10.1 Firmware revision

Version	Date	Author	Description
3.37	2008-OKT-11	OK	Most recent version

10.2 Document revision

Version	Date	Author	Description
1.00	2009-DEC-01	SD	Initial version

11 References

[PDx-110-42]	PDx-110-42 and TMCM-110 Hardware Manual (see http://www.trinamic.com)
[USB-2-X]	USB-2-X Manual (see <u>http://www.trinamic.com</u>)
[CANnes]	CANnes Manual (see <u>http://www.trinamic.com</u>)
[USB-2-485]	USB-2-485 Manual (see <u>http://www.trinamic.com</u>)