Quantic X-Microwave

Analog Devices RF and microwave components are available as drop-in X-MWblocks®
from Quantic X-Microwave.

Get the X-MWblock® drop-in module for this part.

ADL5523

RECOMMENDED FOR NEW DESIGNS

400 MHz TO 4000 MHz Low Noise Amplifier

Part Models
1
1ku List Price
Starting From $1.75
Viewing:

Part Details

  • Operation from 400 MHz to 4000 MHz
  • Noise figure of 0.8 dB at 900 MHz
  • Requires few external components
  • Integrated active bias control circuit
  • Integrated dc blocking capacitors
  • Adjustable bias for low power applications
  • Single-supply operation from 3 V to 5 V
  • Gain of 21.5 dB at 900 MHz
  • OIP3 of 34.0 dBm at 900 MHz
  • P1dB of 21.0 dBm at 900 MHz
  • Small footprint LFCSP
  • Pin-compatible version with 20.8 dB gain available
ADL5523
400 MHz TO 4000 MHz Low Noise Amplifier
ADL5523 Functional Block Diagram ADL5523 Pin Configuration
Add to myAnalog

Add product to the Products section of myAnalog (to receive notifications), to an existing project or to a new project.

Create New Project
Ask a Question

Documentation

Learn More
Add to myAnalog

Add product to the Products section of myAnalog (to receive notifications), to an existing project or to a new project.

Create New Project

Tools & Simulations

S-Parameter 1

Sys-Parameter Models for Keysight Genesys

Sys-Parameter models contain behavioral parameters, such as P1dB, IP3, gain, noise figure and return loss, which describe nonlinear and linear characteristics of a device.

Open Tool

ADIsimRF

ADIsimRF is an easy-to-use RF signal chain calculator. Cascaded gain, noise, distortion and power consumption can be calculated, plotted and exported for signal chains with up to 50 stages. ADIsimRF also includes an extensive data base of device models for ADI’s RF and mixed signal components.

Open Tool

Evaluation Kits

EVAL-ADL5523

ADL5523 Evaluation Board

Product Details

ADL5523-EVALZ is a fully populated, 4-layer, FR4-based evaluation board. For normal operation it requires a single 5 V/100 mA power supply. The 5 V power supply should be connected to the test loops labeled VPOS and GND. Alternatively, the power supply connections may be made via the two pin header, W-1. The RF input is applied to the SMA connector labeled RFIN. The RF output is available at the SMA connector labeled RFOUT.

eval board
QUAD-MxFE Platform

16Tx/16Rx Direct L/S/C-Band Sampled Phased-Array/RADAR/EW/SATCOM Development Platform

Features and Benefits

Quad-MxFE Digitizing Card
  • Multi-Channel, Wideband System Development Platform Using MxFE
  • Mates With Xilinx VCU118 Evaluation Board (Not Included)
  • 16x RF Receive (Rx) Channels (32x Digital Rx Channels)
    • Total 16x 1.5GSPS to 4GSPS ADC
    • 48x Digital Down Converters (DDCs), Each Including Complex Numerically-Controlled Oscillators (NCOs)
    • 16x Programmable Finite Impulse Response Filters (pFIRs)
  • 16x RF Transmit (Tx) Channels (32x Digital Tx Channels)
    • Total 16x 3GSPS to 12GSPS DAC
    • 48x Digital Up Converters (DUCs) , Each Including Complex Numerically-Controlled Oscillators (NCOs)
  • Flexible Rx & Tx RF Front-Ends
    • Rx: Filtering, Amplification, Digital Step Attenuation for Gain Control
    • Tx: Filtering, Amplification
  • On-Board Power Regulation from Single 12V Power Adapter (Included)
  • Flexible Clock Distribution
    • On-Board Clock Distribution from Single External 500MHz Reference
    • Support for External Converter Clock per MxFE
16Tx / 16Rx Calibration Board
  • Mates to Quad-MxFE Digitizing Card & VCU118 PMOD Interface (Cable Included)
  • Provides Both Individual Adjacent Channel Loopback and Combined Channel Loopback Options
  • Combined Tx Channels Out Via SMA Option
  • Combined Rx Channels In Via SMA Option
  • On-Board Log Power Detectors With AD5592R Output To VCU118 Over PMOD
  • On-Board Power Regulation from Single 12V Power Adapter (Included)
Software Features and Benefits
Easy Control Tools and Platform Interfaces to Simplify Software Framework Developments:
  • IIO Oscilloscope GUI
  • MATLAB Add-Ons & Example Scripts
  • Example HDL Builds including JESD204b/JESD204c Bring-Up
  • Embedded Software Solutions for Linux and Device Drivers
  • MATLAB System Applications GUI
Software Reference Design Examples for ADEF Applications to Reduce Prototyping Time:
  • Multi-Chip Synchronization for Power-Up Phase Determinism
  • System-Level Amplitude/Phase Alignment Using NCOs
  • Low-Latency ADC-to-DAC Loopback Bypassing JESD Interface
  • pFIR Control for Broadband Channel-to-Channel Amplitude/Phase Alignment
  • Fast-Frequency Hopping
  • Calibration Board MATLAB Driver File
  • FPGA Programming MATLAB Script

Product Details

The Quad-MxFE System Development Platform contains four MxFE software defined, direct RF sampling transceivers, as well as associated RF front-ends, clocking, and power circuitry. The target application is phased array radars, electronic warfare, and ground-based SATCOM, specifically a 16 transmit/16 receive channel direct sampling phased array at L/S/C band (0.1 GHz to ~5GHz). The Rx & Tx RF front-end has drop-in configurations that allow for customized frequency ranges, depending on the user’s application.

The Quad-MxFE System Development Platform highlights a complete system solution. It is intended as a testbed for demonstrating multi-chip synchronization as well as the implementation of system level calibrations, beamforming algorithms, and other signal processing algorithms. The system is designed to mate with a VCU118 Evaluation Board from Xilinx®, which features the Virtex® UltraScale+ XCVU9P FPGA, with provided reference software, HDL code, and MATLAB system-level interfacing.

In addition to the Quad-MxFE Digitizing Card, the kit also contains a 16Tx / 16Rx Calibration Board that is used to develop system-level calibration algorithms, or otherwise more easily demonstrate power-up phase determinism in situations pertinent to their own use case. The Calibration Board also allows the user to demonstrate combined-channel dynamic range, spurious, and phase noise improvements and can also be controlled via a free MATLAB add-on when connected to the PMOD interface of the VCU118.

The system can be used to enable quick time-to-market development programs for applications like:

  • ADEF (Phased-Array, RADAR, EW, SATCOM)
  • Communications Infrastructure (Multiband 5G and mmWave 5G)
  • Electronic Test and Measurement

EVAL-ADL5523
ADL5523 Evaluation Board
QUAD-MxFE Platform
16Tx/16Rx Direct L/S/C-Band Sampled Phased-Array/RADAR/EW/SATCOM Development Platform
ADQUADMXFE1EBZ Board ADQUADMXFE1EBZ Evaluation Board - Top View ADQUADMXFE1EBZ Evaluation Board - Bottom View Quad-MxFE Evaluation Board with Lights QUAD-MxFE Block Diagram ADQUADMXFE-CAL Board ADQUADMXFE-CAL Evaluation Board - Top View ADQUADMXFE-CAL Evaluation Board - Bottom View

Reference Designs

Figure 1. CN0555 Simplified Block Diagram
CN0555 Circuits from the lab

USB-Powered, 433.92 MHz RF Low Noise Amplifier Receiver with Overpower Protection

Features and Benefits

  • Optimized to Receive the 433MHz ISM Band
  • Receive Gain of 40dB
  • Overvoltage Protection Circuit with Automatic Turn off/on
  • Powered from a USB cable
CN0555
USB-Powered, 433.92 MHz RF Low Noise Amplifier Receiver with Overpower Protection
Figure 1. CN0555 Simplified Block Diagram
EVAL-CN0555-EBZ
EVAL-CN0555-EBZ - Bottom View
EVAL-CN0555-EBZ - Top View

Latest Discussions

Recently Viewed